/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ //#define COMPUTE_IMPULSE_DENOM 1 //It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms. #include "btSequentialImpulseConstraintSolver.h" #include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h" #include "BulletDynamics/Dynamics/btRigidBody.h" #include "btContactConstraint.h" #include "btSolve2LinearConstraint.h" #include "btContactSolverInfo.h" #include "LinearMath/btIDebugDraw.h" #include "btJacobianEntry.h" #include "LinearMath/btMinMax.h" #include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" #include #include "LinearMath/btStackAlloc.h" #include "LinearMath/btQuickprof.h" #include "btSolverBody.h" #include "btSolverConstraint.h" #include "LinearMath/btAlignedObjectArray.h" #include //for memset int gNumSplitImpulseRecoveries = 0; btSequentialImpulseConstraintSolver::btSequentialImpulseConstraintSolver() :m_btSeed2(0) { } btSequentialImpulseConstraintSolver::~btSequentialImpulseConstraintSolver() { } #ifdef USE_SIMD #include #define btVecSplat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e,e,e,e)) static inline __m128 btSimdDot3( __m128 vec0, __m128 vec1 ) { __m128 result = _mm_mul_ps( vec0, vec1); return _mm_add_ps( btVecSplat( result, 0 ), _mm_add_ps( btVecSplat( result, 1 ), btVecSplat( result, 2 ) ) ); } #endif//USE_SIMD // Project Gauss Seidel or the equivalent Sequential Impulse void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) { #ifdef USE_SIMD __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse); __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm))); __m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128)); __m128 deltaVel2Dotn = _mm_sub_ps(btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),btSimdDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128)); deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); btSimdScalar resultLowerLess,resultUpperLess; resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); __m128 upperMinApplied = _mm_sub_ps(upperLimit1,cpAppliedImp); deltaImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied) ); c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1) ); __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); __m128 impulseMagnitude = deltaImpulse; body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); #else resolveSingleConstraintRowGeneric(body1,body2,c); #endif } // Project Gauss Seidel or the equivalent Sequential Impulse void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) { btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm; const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity()); const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity()); // const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn; deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse; if (sum < c.m_lowerLimit) { deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse; c.m_appliedImpulse = c.m_lowerLimit; } else if (sum > c.m_upperLimit) { deltaImpulse = c.m_upperLimit-c.m_appliedImpulse; c.m_appliedImpulse = c.m_upperLimit; } else { c.m_appliedImpulse = sum; } body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); } void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) { #ifdef USE_SIMD __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse); __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm))); __m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128)); __m128 deltaVel2Dotn = _mm_sub_ps(btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),btSimdDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128)); deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); btSimdScalar resultLowerLess,resultUpperLess; resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); __m128 impulseMagnitude = deltaImpulse; body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); #else resolveSingleConstraintRowLowerLimit(body1,body2,c); #endif } // Project Gauss Seidel or the equivalent Sequential Impulse void btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) { btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm; const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity()); const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity()); deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse; if (sum < c.m_lowerLimit) { deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse; c.m_appliedImpulse = c.m_lowerLimit; } else { c.m_appliedImpulse = sum; } body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); } void btSequentialImpulseConstraintSolver::resolveSplitPenetrationImpulseCacheFriendly( btRigidBody& body1, btRigidBody& body2, const btSolverConstraint& c) { if (c.m_rhsPenetration) { gNumSplitImpulseRecoveries++; btScalar deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm; const btScalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity()); const btScalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity()); deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; const btScalar sum = btScalar(c.m_appliedPushImpulse) + deltaImpulse; if (sum < c.m_lowerLimit) { deltaImpulse = c.m_lowerLimit-c.m_appliedPushImpulse; c.m_appliedPushImpulse = c.m_lowerLimit; } else { c.m_appliedPushImpulse = sum; } body1.internalApplyPushImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); body2.internalApplyPushImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); } } void btSequentialImpulseConstraintSolver::resolveSplitPenetrationSIMD(btRigidBody& body1,btRigidBody& body2,const btSolverConstraint& c) { #ifdef USE_SIMD if (!c.m_rhsPenetration) return; gNumSplitImpulseRecoveries++; __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedPushImpulse); __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm))); __m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal.mVec128,body1.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128)); __m128 deltaVel2Dotn = _mm_sub_ps(btSimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128),btSimdDot3((c.m_contactNormal).mVec128,body2.internalGetPushVelocity().mVec128)); deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); btSimdScalar resultLowerLess,resultUpperLess; resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); __m128 impulseMagnitude = deltaImpulse; body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); body2.internalGetPushVelocity().mVec128 = _mm_sub_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); #else resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c); #endif } unsigned long btSequentialImpulseConstraintSolver::btRand2() { m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff; return m_btSeed2; } //See ODE: adam's all-int straightforward(?) dRandInt (0..n-1) int btSequentialImpulseConstraintSolver::btRandInt2 (int n) { // seems good; xor-fold and modulus const unsigned long un = static_cast(n); unsigned long r = btRand2(); // note: probably more aggressive than it needs to be -- might be // able to get away without one or two of the innermost branches. if (un <= 0x00010000UL) { r ^= (r >> 16); if (un <= 0x00000100UL) { r ^= (r >> 8); if (un <= 0x00000010UL) { r ^= (r >> 4); if (un <= 0x00000004UL) { r ^= (r >> 2); if (un <= 0x00000002UL) { r ^= (r >> 1); } } } } } return (int) (r % un); } #if 0 void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject) { btRigidBody* rb = collisionObject? btRigidBody::upcast(collisionObject) : 0; solverBody->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f); solverBody->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f); solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f); solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f); if (rb) { solverBody->internalGetInvMass() = btVector3(rb->getInvMass(),rb->getInvMass(),rb->getInvMass())*rb->getLinearFactor(); solverBody->m_originalBody = rb; solverBody->m_angularFactor = rb->getAngularFactor(); } else { solverBody->internalGetInvMass().setValue(0,0,0); solverBody->m_originalBody = 0; solverBody->m_angularFactor.setValue(1,1,1); } } #endif btScalar btSequentialImpulseConstraintSolver::restitutionCurve(btScalar rel_vel, btScalar restitution) { btScalar rest = restitution * -rel_vel; return rest; } void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection); void applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection) { if (colObj && colObj->hasAnisotropicFriction()) { // transform to local coordinates btVector3 loc_lateral = frictionDirection * colObj->getWorldTransform().getBasis(); const btVector3& friction_scaling = colObj->getAnisotropicFriction(); //apply anisotropic friction loc_lateral *= friction_scaling; // ... and transform it back to global coordinates frictionDirection = colObj->getWorldTransform().getBasis() * loc_lateral; } } void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip) { btRigidBody* body0=btRigidBody::upcast(colObj0); btRigidBody* body1=btRigidBody::upcast(colObj1); solverConstraint.m_contactNormal = normalAxis; solverConstraint.m_solverBodyA = body0 ? body0 : &getFixedBody(); solverConstraint.m_solverBodyB = body1 ? body1 : &getFixedBody(); solverConstraint.m_friction = cp.m_combinedFriction; solverConstraint.m_originalContactPoint = 0; solverConstraint.m_appliedImpulse = 0.f; solverConstraint.m_appliedPushImpulse = 0.f; { btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal); solverConstraint.m_relpos1CrossNormal = ftorqueAxis1; solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor() : btVector3(0,0,0); } { btVector3 ftorqueAxis1 = rel_pos2.cross(-solverConstraint.m_contactNormal); solverConstraint.m_relpos2CrossNormal = ftorqueAxis1; solverConstraint.m_angularComponentB = body1 ? body1->getInvInertiaTensorWorld()*ftorqueAxis1*body1->getAngularFactor() : btVector3(0,0,0); } #ifdef COMPUTE_IMPULSE_DENOM btScalar denom0 = rb0->computeImpulseDenominator(pos1,solverConstraint.m_contactNormal); btScalar denom1 = rb1->computeImpulseDenominator(pos2,solverConstraint.m_contactNormal); #else btVector3 vec; btScalar denom0 = 0.f; btScalar denom1 = 0.f; if (body0) { vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); denom0 = body0->getInvMass() + normalAxis.dot(vec); } if (body1) { vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2); denom1 = body1->getInvMass() + normalAxis.dot(vec); } #endif //COMPUTE_IMPULSE_DENOM btScalar denom = relaxation/(denom0+denom1); solverConstraint.m_jacDiagABInv = denom; #ifdef _USE_JACOBIAN solverConstraint.m_jac = btJacobianEntry ( rel_pos1,rel_pos2,solverConstraint.m_contactNormal, body0->getInvInertiaDiagLocal(), body0->getInvMass(), body1->getInvInertiaDiagLocal(), body1->getInvMass()); #endif //_USE_JACOBIAN { btScalar rel_vel; btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?body0->getLinearVelocity():btVector3(0,0,0)) + solverConstraint.m_relpos1CrossNormal.dot(body0?body0->getAngularVelocity():btVector3(0,0,0)); btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?body1->getLinearVelocity():btVector3(0,0,0)) + solverConstraint.m_relpos2CrossNormal.dot(body1?body1->getAngularVelocity():btVector3(0,0,0)); rel_vel = vel1Dotn+vel2Dotn; // btScalar positionalError = 0.f; btSimdScalar velocityError = desiredVelocity - rel_vel; btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv); solverConstraint.m_rhs = velocityImpulse; solverConstraint.m_cfm = cfmSlip; solverConstraint.m_lowerLimit = 0; solverConstraint.m_upperLimit = 1e10f; } } btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,btRigidBody* solverBodyA,btRigidBody* solverBodyB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip) { btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing(); solverConstraint.m_frictionIndex = frictionIndex; setupFrictionConstraint(solverConstraint, normalAxis, solverBodyA, solverBodyB, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, desiredVelocity, cfmSlip); return solverConstraint; } int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body) { #if 0 int solverBodyIdA = -1; if (body.getCompanionId() >= 0) { //body has already been converted solverBodyIdA = body.getCompanionId(); } else { btRigidBody* rb = btRigidBody::upcast(&body); if (rb && rb->getInvMass()) { solverBodyIdA = m_tmpSolverBodyPool.size(); btSolverBody& solverBody = m_tmpSolverBodyPool.expand(); initSolverBody(&solverBody,&body); body.setCompanionId(solverBodyIdA); } else { return 0;//assume first one is a fixed solver body } } return solverBodyIdA; #endif return 0; } #include void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstraint& solverConstraint, btCollisionObject* colObj0, btCollisionObject* colObj1, btManifoldPoint& cp, const btContactSolverInfo& infoGlobal, btVector3& vel, btScalar& rel_vel, btScalar& relaxation, btVector3& rel_pos1, btVector3& rel_pos2) { btRigidBody* rb0 = btRigidBody::upcast(colObj0); btRigidBody* rb1 = btRigidBody::upcast(colObj1); const btVector3& pos1 = cp.getPositionWorldOnA(); const btVector3& pos2 = cp.getPositionWorldOnB(); // btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin(); // btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin(); rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin(); rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin(); relaxation = 1.f; btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB); solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0); btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB); solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0); { #ifdef COMPUTE_IMPULSE_DENOM btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB); btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB); #else btVector3 vec; btScalar denom0 = 0.f; btScalar denom1 = 0.f; if (rb0) { vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec); } if (rb1) { vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2); denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec); } #endif //COMPUTE_IMPULSE_DENOM btScalar denom = relaxation/(denom0+denom1); solverConstraint.m_jacDiagABInv = denom; } solverConstraint.m_contactNormal = cp.m_normalWorldOnB; solverConstraint.m_relpos1CrossNormal = rel_pos1.cross(cp.m_normalWorldOnB); solverConstraint.m_relpos2CrossNormal = rel_pos2.cross(-cp.m_normalWorldOnB); btVector3 vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0); btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0); vel = vel1 - vel2; rel_vel = cp.m_normalWorldOnB.dot(vel); btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop; solverConstraint.m_friction = cp.m_combinedFriction; btScalar restitution = 0.f; if (cp.m_lifeTime>infoGlobal.m_restingContactRestitutionThreshold) { restitution = 0.f; } else { restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution); if (restitution <= btScalar(0.)) { restitution = 0.f; }; } ///warm starting (or zero if disabled) if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) { solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor; if (rb0) rb0->internalApplyImpulse(solverConstraint.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse); if (rb1) rb1->internalApplyImpulse(solverConstraint.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse); } else { solverConstraint.m_appliedImpulse = 0.f; } solverConstraint.m_appliedPushImpulse = 0.f; { btScalar rel_vel; btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?rb0->getLinearVelocity():btVector3(0,0,0)) + solverConstraint.m_relpos1CrossNormal.dot(rb0?rb0->getAngularVelocity():btVector3(0,0,0)); btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?rb1->getLinearVelocity():btVector3(0,0,0)) + solverConstraint.m_relpos2CrossNormal.dot(rb1?rb1->getAngularVelocity():btVector3(0,0,0)); rel_vel = vel1Dotn+vel2Dotn; btScalar positionalError = 0.f; btScalar velocityError = restitution - rel_vel;// * damping; if (penetration>0) { positionalError = 0; velocityError -= penetration / infoGlobal.m_timeStep; } else { positionalError = -penetration * infoGlobal.m_erp/infoGlobal.m_timeStep; } btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv; btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv; if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) { //combine position and velocity into rhs solverConstraint.m_rhs = penetrationImpulse+velocityImpulse; solverConstraint.m_rhsPenetration = 0.f; } else { //split position and velocity into rhs and m_rhsPenetration solverConstraint.m_rhs = velocityImpulse; solverConstraint.m_rhsPenetration = penetrationImpulse; } solverConstraint.m_cfm = 0.f; solverConstraint.m_lowerLimit = 0; solverConstraint.m_upperLimit = 1e10f; } } void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolverConstraint& solverConstraint, btRigidBody* rb0, btRigidBody* rb1, btManifoldPoint& cp, const btContactSolverInfo& infoGlobal) { if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING) { { btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex]; if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) { frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor; if (rb0) rb0->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse); if (rb1) rb1->internalApplyImpulse(frictionConstraint1.m_contactNormal*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-(btScalar)frictionConstraint1.m_appliedImpulse); } else { frictionConstraint1.m_appliedImpulse = 0.f; } } if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) { btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1]; if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) { frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor; if (rb0) rb0->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse); if (rb1) rb1->internalApplyImpulse(frictionConstraint2.m_contactNormal*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-(btScalar)frictionConstraint2.m_appliedImpulse); } else { frictionConstraint2.m_appliedImpulse = 0.f; } } } else { btSolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex]; frictionConstraint1.m_appliedImpulse = 0.f; if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) { btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1]; frictionConstraint2.m_appliedImpulse = 0.f; } } } void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal) { btCollisionObject* colObj0=0,*colObj1=0; colObj0 = (btCollisionObject*)manifold->getBody0(); colObj1 = (btCollisionObject*)manifold->getBody1(); btRigidBody* solverBodyA = btRigidBody::upcast(colObj0); btRigidBody* solverBodyB = btRigidBody::upcast(colObj1); ///avoid collision response between two static objects if ((!solverBodyA || !solverBodyA->getInvMass()) && (!solverBodyB || !solverBodyB->getInvMass())) return; for (int j=0;jgetNumContacts();j++) { btManifoldPoint& cp = manifold->getContactPoint(j); if (cp.getDistance() <= manifold->getContactProcessingThreshold()) { btVector3 rel_pos1; btVector3 rel_pos2; btScalar relaxation; btScalar rel_vel; btVector3 vel; int frictionIndex = m_tmpSolverContactConstraintPool.size(); btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing(); btRigidBody* rb0 = btRigidBody::upcast(colObj0); btRigidBody* rb1 = btRigidBody::upcast(colObj1); solverConstraint.m_solverBodyA = rb0? rb0 : &getFixedBody(); solverConstraint.m_solverBodyB = rb1? rb1 : &getFixedBody(); solverConstraint.m_originalContactPoint = &cp; setupContactConstraint(solverConstraint, colObj0, colObj1, cp, infoGlobal, vel, rel_vel, relaxation, rel_pos1, rel_pos2); // const btVector3& pos1 = cp.getPositionWorldOnA(); // const btVector3& pos2 = cp.getPositionWorldOnB(); /////setup the friction constraints solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size(); if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized) { cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel; btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2(); if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON) { cp.m_lateralFrictionDir1 /= btSqrt(lat_rel_vel); if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) { cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB); cp.m_lateralFrictionDir2.normalize();//?? applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2); applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2); addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); } applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1); applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1); addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); cp.m_lateralFrictionInitialized = true; } else { //re-calculate friction direction every frame, todo: check if this is really needed btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2); if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) { applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2); applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2); addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); } applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1); applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1); addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); cp.m_lateralFrictionInitialized = true; } } else { addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1); if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)) addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyA,solverBodyB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2); } setFrictionConstraintImpulse( solverConstraint, rb0, rb1, cp, infoGlobal); } } } btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc) { BT_PROFILE("solveGroupCacheFriendlySetup"); (void)stackAlloc; (void)debugDrawer; if (!(numConstraints + numManifolds)) { // printf("empty\n"); return 0.f; } if (infoGlobal.m_splitImpulse) { for (int i = 0; i < numBodies; i++) { btRigidBody* body = btRigidBody::upcast(bodies[i]); if (body) { body->internalGetDeltaLinearVelocity().setZero(); body->internalGetDeltaAngularVelocity().setZero(); body->internalGetPushVelocity().setZero(); body->internalGetTurnVelocity().setZero(); } } } else { for (int i = 0; i < numBodies; i++) { btRigidBody* body = btRigidBody::upcast(bodies[i]); if (body) { body->internalGetDeltaLinearVelocity().setZero(); body->internalGetDeltaAngularVelocity().setZero(); } } } if (1) { int j; for (j=0;jbuildJacobian(); constraint->internalSetAppliedImpulse(0.0f); } } //btRigidBody* rb0=0,*rb1=0; //if (1) { { int totalNumRows = 0; int i; m_tmpConstraintSizesPool.resize(numConstraints); //calculate the total number of contraint rows for (i=0;iisEnabled()) { constraints[i]->getInfo1(&info1); } else { info1.m_numConstraintRows = 0; info1.nub = 0; } totalNumRows += info1.m_numConstraintRows; } m_tmpSolverNonContactConstraintPool.resize(totalNumRows); ///setup the btSolverConstraints int currentRow = 0; for (i=0;igetRigidBodyA(); btRigidBody& rbB = constraint->getRigidBodyB(); int j; for ( j=0;jm_contactNormal; info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal; info2.m_J2linearAxis = 0; info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal; info2.rowskip = sizeof(btSolverConstraint)/sizeof(btScalar);//check this ///the size of btSolverConstraint needs be a multiple of btScalar btAssert(info2.rowskip*sizeof(btScalar)== sizeof(btSolverConstraint)); info2.m_constraintError = ¤tConstraintRow->m_rhs; currentConstraintRow->m_cfm = infoGlobal.m_globalCfm; info2.m_damping = infoGlobal.m_damping; info2.cfm = ¤tConstraintRow->m_cfm; info2.m_lowerLimit = ¤tConstraintRow->m_lowerLimit; info2.m_upperLimit = ¤tConstraintRow->m_upperLimit; info2.m_numIterations = infoGlobal.m_numIterations; constraints[i]->getInfo2(&info2); if (currentConstraintRow->m_upperLimit>constraints[i]->getBreakingImpulseThreshold()) { currentConstraintRow->m_upperLimit = constraints[i]->getBreakingImpulseThreshold(); } if (currentConstraintRow->m_lowerLimit<-constraints[i]->getBreakingImpulseThreshold()) { currentConstraintRow->m_lowerLimit = -constraints[i]->getBreakingImpulseThreshold(); } ///finalize the constraint setup for ( j=0;jgetRigidBodyA().getInvInertiaTensorWorld()*ftorqueAxis1*constraint->getRigidBodyA().getAngularFactor(); } { const btVector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal; solverConstraint.m_angularComponentB = constraint->getRigidBodyB().getInvInertiaTensorWorld()*ftorqueAxis2*constraint->getRigidBodyB().getAngularFactor(); } { btVector3 iMJlA = solverConstraint.m_contactNormal*rbA.getInvMass(); btVector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal; btVector3 iMJlB = solverConstraint.m_contactNormal*rbB.getInvMass();//sign of normal? btVector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal; btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal); sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal); sum += iMJlB.dot(solverConstraint.m_contactNormal); sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal); solverConstraint.m_jacDiagABInv = btScalar(1.)/sum; } ///fix rhs ///todo: add force/torque accelerators { btScalar rel_vel; btScalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.getLinearVelocity()) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity()); btScalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.getLinearVelocity()) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity()); rel_vel = vel1Dotn+vel2Dotn; btScalar restitution = 0.f; btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2 btScalar velocityError = restitution - rel_vel * info2.m_damping; btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv; btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv; solverConstraint.m_rhs = penetrationImpulse+velocityImpulse; solverConstraint.m_appliedImpulse = 0.f; } } } currentRow+=m_tmpConstraintSizesPool[i].m_numConstraintRows; } } { int i; btPersistentManifold* manifold = 0; // btCollisionObject* colObj0=0,*colObj1=0; for (i=0;isolveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep); } ///solve all contact constraints using SIMD, if available int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); for (j=0;jbtScalar(0)) { solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse); solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse; resolveSingleConstraintRowGenericSIMD(*solveManifold.m_solverBodyA, *solveManifold.m_solverBodyB,solveManifold); } } } else { ///solve all joint constraints for (j=0;jsolveConstraintObsolete(constraints[j]->getRigidBodyA(),constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep); } ///solve all contact constraints int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); for (j=0;jbtScalar(0)) { solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse); solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse; resolveSingleConstraintRowGeneric(*solveManifold.m_solverBodyA,*solveManifold.m_solverBodyB,solveManifold); } } } return 0.f; } void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc) { int iteration; if (infoGlobal.m_splitImpulse) { if (infoGlobal.m_solverMode & SOLVER_SIMD) { for ( iteration = 0;iterationm_appliedImpulse = solveManifold.m_appliedImpulse; if (infoGlobal.m_solverMode & SOLVER_USE_FRICTION_WARMSTARTING) { pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse; pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex+1].m_appliedImpulse; } //do a callback here? } numPoolConstraints = m_tmpSolverNonContactConstraintPool.size(); for (j=0;jinternalSetAppliedImpulse(solverConstr.m_appliedImpulse); if (solverConstr.m_appliedImpulse>constr->getBreakingImpulseThreshold()) { constr->setEnabled(false); } } if (infoGlobal.m_splitImpulse) { for ( i=0;iinternalWritebackVelocity(infoGlobal.m_timeStep); } } else { for ( i=0;iinternalWritebackVelocity(); } } m_tmpSolverContactConstraintPool.resize(0); m_tmpSolverNonContactConstraintPool.resize(0); m_tmpSolverContactFrictionConstraintPool.resize(0); return 0.f; } /// btSequentialImpulseConstraintSolver Sequentially applies impulses btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btStackAlloc* stackAlloc,btDispatcher* /*dispatcher*/) { BT_PROFILE("solveGroup"); //you need to provide at least some bodies btAssert(bodies); btAssert(numBodies); solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc); solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc); solveGroupCacheFriendlyFinish(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer, stackAlloc); return 0.f; } void btSequentialImpulseConstraintSolver::reset() { m_btSeed2 = 0; } btRigidBody& btSequentialImpulseConstraintSolver::getFixedBody() { static btRigidBody s_fixed(0, 0,0); s_fixed.setMassProps(btScalar(0.),btVector3(btScalar(0.),btScalar(0.),btScalar(0.))); return s_fixed; }