/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "btSphereBoxCollisionAlgorithm.h" #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" #include "BulletCollision/CollisionShapes/btSphereShape.h" #include "BulletCollision/CollisionShapes/btBoxShape.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" //#include btSphereBoxCollisionAlgorithm::btSphereBoxCollisionAlgorithm(btPersistentManifold* mf,const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* col0,btCollisionObject* col1, bool isSwapped) : btActivatingCollisionAlgorithm(ci,col0,col1), m_ownManifold(false), m_manifoldPtr(mf), m_isSwapped(isSwapped) { btCollisionObject* sphereObj = m_isSwapped? col1 : col0; btCollisionObject* boxObj = m_isSwapped? col0 : col1; if (!m_manifoldPtr && m_dispatcher->needsCollision(sphereObj,boxObj)) { m_manifoldPtr = m_dispatcher->getNewManifold(sphereObj,boxObj); m_ownManifold = true; } } btSphereBoxCollisionAlgorithm::~btSphereBoxCollisionAlgorithm() { if (m_ownManifold) { if (m_manifoldPtr) m_dispatcher->releaseManifold(m_manifoldPtr); } } void btSphereBoxCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) { (void)dispatchInfo; (void)resultOut; if (!m_manifoldPtr) return; btCollisionObject* sphereObj = m_isSwapped? body1 : body0; btCollisionObject* boxObj = m_isSwapped? body0 : body1; btSphereShape* sphere0 = (btSphereShape*)sphereObj->getCollisionShape(); btVector3 normalOnSurfaceB; btVector3 pOnBox,pOnSphere; btVector3 sphereCenter = sphereObj->getWorldTransform().getOrigin(); btScalar radius = sphere0->getRadius(); btScalar dist = getSphereDistance(boxObj,pOnBox,pOnSphere,sphereCenter,radius); resultOut->setPersistentManifold(m_manifoldPtr); if (dist < SIMD_EPSILON) { btVector3 normalOnSurfaceB = (pOnBox- pOnSphere).normalize(); /// report a contact. internally this will be kept persistent, and contact reduction is done resultOut->addContactPoint(normalOnSurfaceB,pOnBox,dist); } if (m_ownManifold) { if (m_manifoldPtr->getNumContacts()) { resultOut->refreshContactPoints(); } } } btScalar btSphereBoxCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0,btCollisionObject* col1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut) { (void)resultOut; (void)dispatchInfo; (void)col0; (void)col1; //not yet return btScalar(1.); } btScalar btSphereBoxCollisionAlgorithm::getSphereDistance(btCollisionObject* boxObj, btVector3& pointOnBox, btVector3& v3PointOnSphere, const btVector3& sphereCenter, btScalar fRadius ) { btScalar margins; btVector3 bounds[2]; btBoxShape* boxShape= (btBoxShape*)boxObj->getCollisionShape(); bounds[0] = -boxShape->getHalfExtentsWithoutMargin(); bounds[1] = boxShape->getHalfExtentsWithoutMargin(); margins = boxShape->getMargin();//also add sphereShape margin? const btTransform& m44T = boxObj->getWorldTransform(); btVector3 boundsVec[2]; btScalar fPenetration; boundsVec[0] = bounds[0]; boundsVec[1] = bounds[1]; btVector3 marginsVec( margins, margins, margins ); // add margins bounds[0] += marginsVec; bounds[1] -= marginsVec; ///////////////////////////////////////////////// btVector3 tmp, prel, n[6], normal, v3P; btScalar fSep = btScalar(10000000.0), fSepThis; n[0].setValue( btScalar(-1.0), btScalar(0.0), btScalar(0.0) ); n[1].setValue( btScalar(0.0), btScalar(-1.0), btScalar(0.0) ); n[2].setValue( btScalar(0.0), btScalar(0.0), btScalar(-1.0) ); n[3].setValue( btScalar(1.0), btScalar(0.0), btScalar(0.0) ); n[4].setValue( btScalar(0.0), btScalar(1.0), btScalar(0.0) ); n[5].setValue( btScalar(0.0), btScalar(0.0), btScalar(1.0) ); // convert point in local space prel = m44T.invXform( sphereCenter); bool bFound = false; v3P = prel; for (int i=0;i<6;i++) { int j = i<3? 0:1; if ( (fSepThis = ((v3P-bounds[j]) .dot(n[i]))) > btScalar(0.0) ) { v3P = v3P - n[i]*fSepThis; bFound = true; } } // if ( bFound ) { bounds[0] = boundsVec[0]; bounds[1] = boundsVec[1]; normal = (prel - v3P).normalize(); pointOnBox = v3P + normal*margins; v3PointOnSphere = prel - normal*fRadius; if ( ((v3PointOnSphere - pointOnBox) .dot (normal)) > btScalar(0.0) ) { return btScalar(1.0); } // transform back in world space tmp = m44T( pointOnBox); pointOnBox = tmp; tmp = m44T( v3PointOnSphere); v3PointOnSphere = tmp; btScalar fSeps2 = (pointOnBox-v3PointOnSphere).length2(); //if this fails, fallback into deeper penetration case, below if (fSeps2 > SIMD_EPSILON) { fSep = - btSqrt(fSeps2); normal = (pointOnBox-v3PointOnSphere); normal *= btScalar(1.)/fSep; } return fSep; } ////////////////////////////////////////////////// // Deep penetration case fPenetration = getSpherePenetration( boxObj,pointOnBox, v3PointOnSphere, sphereCenter, fRadius,bounds[0],bounds[1] ); bounds[0] = boundsVec[0]; bounds[1] = boundsVec[1]; if ( fPenetration <= btScalar(0.0) ) return (fPenetration-margins); else return btScalar(1.0); } btScalar btSphereBoxCollisionAlgorithm::getSpherePenetration( btCollisionObject* boxObj,btVector3& pointOnBox, btVector3& v3PointOnSphere, const btVector3& sphereCenter, btScalar fRadius, const btVector3& aabbMin, const btVector3& aabbMax) { btVector3 bounds[2]; bounds[0] = aabbMin; bounds[1] = aabbMax; btVector3 p0, tmp, prel, n[6], normal; btScalar fSep = btScalar(-10000000.0), fSepThis; // set p0 and normal to a default value to shup up GCC p0.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); normal.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); n[0].setValue( btScalar(-1.0), btScalar(0.0), btScalar(0.0) ); n[1].setValue( btScalar(0.0), btScalar(-1.0), btScalar(0.0) ); n[2].setValue( btScalar(0.0), btScalar(0.0), btScalar(-1.0) ); n[3].setValue( btScalar(1.0), btScalar(0.0), btScalar(0.0) ); n[4].setValue( btScalar(0.0), btScalar(1.0), btScalar(0.0) ); n[5].setValue( btScalar(0.0), btScalar(0.0), btScalar(1.0) ); const btTransform& m44T = boxObj->getWorldTransform(); // convert point in local space prel = m44T.invXform( sphereCenter); /////////// for (int i=0;i<6;i++) { int j = i<3 ? 0:1; if ( (fSepThis = ((prel-bounds[j]) .dot( n[i]))-fRadius) > btScalar(0.0) ) return btScalar(1.0); if ( fSepThis > fSep ) { p0 = bounds[j]; normal = (btVector3&)n[i]; fSep = fSepThis; } } pointOnBox = prel - normal*(normal.dot((prel-p0))); v3PointOnSphere = pointOnBox + normal*fSep; // transform back in world space tmp = m44T( pointOnBox); pointOnBox = tmp; tmp = m44T( v3PointOnSphere); v3PointOnSphere = tmp; normal = (pointOnBox-v3PointOnSphere).normalize(); return fSep; }