/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #ifndef BT_OBJECT_ARRAY__ #define BT_OBJECT_ARRAY__ #include "btScalar.h" // has definitions like SIMD_FORCE_INLINE #include "btAlignedAllocator.h" ///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW ///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors ///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator= ///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and ///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240 #define BT_USE_PLACEMENT_NEW 1 //#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in or or otherwise... #ifdef BT_USE_MEMCPY #include #include #endif //BT_USE_MEMCPY #ifdef BT_USE_PLACEMENT_NEW #include //for placement new #endif //BT_USE_PLACEMENT_NEW ///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods ///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data template //template class btAlignedObjectArray { btAlignedAllocator m_allocator; int m_size; int m_capacity; T* m_data; //PCK: added this line bool m_ownsMemory; protected: SIMD_FORCE_INLINE int allocSize(int size) { return (size ? size*2 : 1); } SIMD_FORCE_INLINE void copy(int start,int end, T* dest) const { int i; for (i=start;i size()) { reserve(newsize); } #ifdef BT_USE_PLACEMENT_NEW for (int i=curSize;i void quickSortInternal(L CompareFunc,int lo, int hi) { // lo is the lower index, hi is the upper index // of the region of array a that is to be sorted int i=lo, j=hi; T x=m_data[(lo+hi)/2]; // partition do { while (CompareFunc(m_data[i],x)) i++; while (CompareFunc(x,m_data[j])) j--; if (i<=j) { swap(i,j); i++; j--; } } while (i<=j); // recursion if (lo void quickSort(L CompareFunc) { //don't sort 0 or 1 elements if (size()>1) { quickSortInternal(CompareFunc,0,size()-1); } } ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/ template void downHeap(T *pArr, int k, int n,L CompareFunc) { /* PRE: a[k+1..N] is a heap */ /* POST: a[k..N] is a heap */ T temp = pArr[k - 1]; /* k has child(s) */ while (k <= n/2) { int child = 2*k; if ((child < n) && CompareFunc(pArr[child - 1] , pArr[child])) { child++; } /* pick larger child */ if (CompareFunc(temp , pArr[child - 1])) { /* move child up */ pArr[k - 1] = pArr[child - 1]; k = child; } else { break; } } pArr[k - 1] = temp; } /*downHeap*/ void swap(int index0,int index1) { #ifdef BT_USE_MEMCPY char temp[sizeof(T)]; memcpy(temp,&m_data[index0],sizeof(T)); memcpy(&m_data[index0],&m_data[index1],sizeof(T)); memcpy(&m_data[index1],temp,sizeof(T)); #else T temp = m_data[index0]; m_data[index0] = m_data[index1]; m_data[index1] = temp; #endif //BT_USE_PLACEMENT_NEW } template void heapSort(L CompareFunc) { /* sort a[0..N-1], N.B. 0 to N-1 */ int k; int n = m_size; for (k = n/2; k > 0; k--) { downHeap(m_data, k, n, CompareFunc); } /* a[1..N] is now a heap */ while ( n>=1 ) { swap(0,n-1); /* largest of a[0..n-1] */ n = n - 1; /* restore a[1..i-1] heap */ downHeap(m_data, 1, n, CompareFunc); } } ///non-recursive binary search, assumes sorted array int findBinarySearch(const T& key) const { int first = 0; int last = size()-1; //assume sorted array while (first <= last) { int mid = (first + last) / 2; // compute mid point. if (key > m_data[mid]) first = mid + 1; // repeat search in top half. else if (key < m_data[mid]) last = mid - 1; // repeat search in bottom half. else return mid; // found it. return position ///// } return size(); // failed to find key } int findLinearSearch(const T& key) const { int index=size(); int i; for (i=0;i