/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev /// Added support for generic constraint solver through getInfo1/getInfo2 methods /* 2007-09-09 btGeneric6DofConstraint Refactored by Francisco Le?n email: projectileman@yahoo.com http://gimpact.sf.net */ #ifndef BT_GENERIC_6DOF_CONSTRAINT_H #define BT_GENERIC_6DOF_CONSTRAINT_H #include "LinearMath/btVector3.h" #include "btJacobianEntry.h" #include "btTypedConstraint.h" class btRigidBody; //! Rotation Limit structure for generic joints class btRotationalLimitMotor { public: //! limit_parameters //!@{ btScalar m_loLimit;//!< joint limit btScalar m_hiLimit;//!< joint limit btScalar m_targetVelocity;//!< target motor velocity btScalar m_maxMotorForce;//!< max force on motor btScalar m_maxLimitForce;//!< max force on limit btScalar m_damping;//!< Damping. btScalar m_limitSoftness;//! Relaxation factor btScalar m_normalCFM;//!< Constraint force mixing factor btScalar m_stopERP;//!< Error tolerance factor when joint is at limit btScalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit btScalar m_bounce;//!< restitution factor bool m_enableMotor; //!@} //! temp_variables //!@{ btScalar m_currentLimitError;//! How much is violated this limit btScalar m_currentPosition; //! current value of angle int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit btScalar m_accumulatedImpulse; //!@} btRotationalLimitMotor() { m_accumulatedImpulse = 0.f; m_targetVelocity = 0; m_maxMotorForce = 0.1f; m_maxLimitForce = 300.0f; m_loLimit = 1.0f; m_hiLimit = -1.0f; m_normalCFM = 0.f; m_stopERP = 0.2f; m_stopCFM = 0.f; m_bounce = 0.0f; m_damping = 1.0f; m_limitSoftness = 0.5f; m_currentLimit = 0; m_currentLimitError = 0; m_enableMotor = false; } btRotationalLimitMotor(const btRotationalLimitMotor & limot) { m_targetVelocity = limot.m_targetVelocity; m_maxMotorForce = limot.m_maxMotorForce; m_limitSoftness = limot.m_limitSoftness; m_loLimit = limot.m_loLimit; m_hiLimit = limot.m_hiLimit; m_normalCFM = limot.m_normalCFM; m_stopERP = limot.m_stopERP; m_stopCFM = limot.m_stopCFM; m_bounce = limot.m_bounce; m_currentLimit = limot.m_currentLimit; m_currentLimitError = limot.m_currentLimitError; m_enableMotor = limot.m_enableMotor; } //! Is limited bool isLimited() { if(m_loLimit > m_hiLimit) return false; return true; } //! Need apply correction bool needApplyTorques() { if(m_currentLimit == 0 && m_enableMotor == false) return false; return true; } //! calculates error /*! calculates m_currentLimit and m_currentLimitError. */ int testLimitValue(btScalar test_value); //! apply the correction impulses for two bodies btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1); }; class btTranslationalLimitMotor { public: btVector3 m_lowerLimit;//!< the constraint lower limits btVector3 m_upperLimit;//!< the constraint upper limits btVector3 m_accumulatedImpulse; //! Linear_Limit_parameters //!@{ btScalar m_limitSoftness;//!< Softness for linear limit btScalar m_damping;//!< Damping for linear limit btScalar m_restitution;//! Bounce parameter for linear limit btVector3 m_normalCFM;//!< Constraint force mixing factor btVector3 m_stopERP;//!< Error tolerance factor when joint is at limit btVector3 m_stopCFM;//!< Constraint force mixing factor when joint is at limit //!@} bool m_enableMotor[3]; btVector3 m_targetVelocity;//!< target motor velocity btVector3 m_maxMotorForce;//!< max force on motor btVector3 m_currentLimitError;//! How much is violated this limit btVector3 m_currentLinearDiff;//! Current relative offset of constraint frames int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit btTranslationalLimitMotor() { m_lowerLimit.setValue(0.f,0.f,0.f); m_upperLimit.setValue(0.f,0.f,0.f); m_accumulatedImpulse.setValue(0.f,0.f,0.f); m_normalCFM.setValue(0.f, 0.f, 0.f); m_stopERP.setValue(0.2f, 0.2f, 0.2f); m_stopCFM.setValue(0.f, 0.f, 0.f); m_limitSoftness = 0.7f; m_damping = btScalar(1.0f); m_restitution = btScalar(0.5f); for(int i=0; i < 3; i++) { m_enableMotor[i] = false; m_targetVelocity[i] = btScalar(0.f); m_maxMotorForce[i] = btScalar(0.f); } } btTranslationalLimitMotor(const btTranslationalLimitMotor & other ) { m_lowerLimit = other.m_lowerLimit; m_upperLimit = other.m_upperLimit; m_accumulatedImpulse = other.m_accumulatedImpulse; m_limitSoftness = other.m_limitSoftness ; m_damping = other.m_damping; m_restitution = other.m_restitution; m_normalCFM = other.m_normalCFM; m_stopERP = other.m_stopERP; m_stopCFM = other.m_stopCFM; for(int i=0; i < 3; i++) { m_enableMotor[i] = other.m_enableMotor[i]; m_targetVelocity[i] = other.m_targetVelocity[i]; m_maxMotorForce[i] = other.m_maxMotorForce[i]; } } //! Test limit /*! - free means upper < lower, - locked means upper == lower - limited means upper > lower - limitIndex: first 3 are linear, next 3 are angular */ inline bool isLimited(int limitIndex) { return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); } inline bool needApplyForce(int limitIndex) { if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false; return true; } int testLimitValue(int limitIndex, btScalar test_value); btScalar solveLinearAxis( btScalar timeStep, btScalar jacDiagABInv, btRigidBody& body1,const btVector3 &pointInA, btRigidBody& body2,const btVector3 &pointInB, int limit_index, const btVector3 & axis_normal_on_a, const btVector3 & anchorPos); }; enum bt6DofFlags { BT_6DOF_FLAGS_CFM_NORM = 1, BT_6DOF_FLAGS_CFM_STOP = 2, BT_6DOF_FLAGS_ERP_STOP = 4 }; #define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis /// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space /*! btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'. currently this limit supports rotational motors
*/ class btGeneric6DofConstraint : public btTypedConstraint { protected: //! relative_frames //!@{ btTransform m_frameInA;//!< the constraint space w.r.t body A btTransform m_frameInB;//!< the constraint space w.r.t body B //!@} //! Jacobians //!@{ btJacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints btJacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints //!@} //! Linear_Limit_parameters //!@{ btTranslationalLimitMotor m_linearLimits; //!@} //! hinge_parameters //!@{ btRotationalLimitMotor m_angularLimits[3]; //!@} protected: //! temporal variables //!@{ btScalar m_timeStep; btTransform m_calculatedTransformA; btTransform m_calculatedTransformB; btVector3 m_calculatedAxisAngleDiff; btVector3 m_calculatedAxis[3]; btVector3 m_calculatedLinearDiff; btScalar m_factA; btScalar m_factB; bool m_hasStaticBody; btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes bool m_useLinearReferenceFrameA; bool m_useOffsetForConstraintFrame; int m_flags; //!@} btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other) { btAssert(0); (void) other; return *this; } int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); void buildLinearJacobian( btJacobianEntry & jacLinear,const btVector3 & normalWorld, const btVector3 & pivotAInW,const btVector3 & pivotBInW); void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW); // tests linear limits void calculateLinearInfo(); //! calcs the euler angles between the two bodies. void calculateAngleInfo(); public: ///for backwards compatibility during the transition to 'getInfo/getInfo2' bool m_useSolveConstraintObsolete; btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA); btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB); //! Calcs global transform of the offsets /*! Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies. \sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo */ void calculateTransforms(const btTransform& transA,const btTransform& transB); void calculateTransforms(); //! Gets the global transform of the offset for body A /*! \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. */ const btTransform & getCalculatedTransformA() const { return m_calculatedTransformA; } //! Gets the global transform of the offset for body B /*! \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. */ const btTransform & getCalculatedTransformB() const { return m_calculatedTransformB; } const btTransform & getFrameOffsetA() const { return m_frameInA; } const btTransform & getFrameOffsetB() const { return m_frameInB; } btTransform & getFrameOffsetA() { return m_frameInA; } btTransform & getFrameOffsetB() { return m_frameInB; } //! performs Jacobian calculation, and also calculates angle differences and axis virtual void buildJacobian(); virtual void getInfo1 (btConstraintInfo1* info); void getInfo1NonVirtual (btConstraintInfo1* info); virtual void getInfo2 (btConstraintInfo2* info); void getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); void updateRHS(btScalar timeStep); //! Get the rotation axis in global coordinates /*! \pre btGeneric6DofConstraint.buildJacobian must be called previously. */ btVector3 getAxis(int axis_index) const; //! Get the relative Euler angle /*! \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. */ btScalar getAngle(int axis_index) const; //! Get the relative position of the constraint pivot /*! \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. */ btScalar getRelativePivotPosition(int axis_index) const; void setFrames(const btTransform & frameA, const btTransform & frameB); //! Test angular limit. /*! Calculates angular correction and returns true if limit needs to be corrected. \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. */ bool testAngularLimitMotor(int axis_index); void setLinearLowerLimit(const btVector3& linearLower) { m_linearLimits.m_lowerLimit = linearLower; } void getLinearLowerLimit(btVector3& linearLower) { linearLower = m_linearLimits.m_lowerLimit; } void setLinearUpperLimit(const btVector3& linearUpper) { m_linearLimits.m_upperLimit = linearUpper; } void getLinearUpperLimit(btVector3& linearUpper) { linearUpper = m_linearLimits.m_upperLimit; } void setAngularLowerLimit(const btVector3& angularLower) { for(int i = 0; i < 3; i++) m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]); } void getAngularLowerLimit(btVector3& angularLower) { for(int i = 0; i < 3; i++) angularLower[i] = m_angularLimits[i].m_loLimit; } void setAngularUpperLimit(const btVector3& angularUpper) { for(int i = 0; i < 3; i++) m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]); } void getAngularUpperLimit(btVector3& angularUpper) { for(int i = 0; i < 3; i++) angularUpper[i] = m_angularLimits[i].m_hiLimit; } //! Retrieves the angular limit informacion btRotationalLimitMotor * getRotationalLimitMotor(int index) { return &m_angularLimits[index]; } //! Retrieves the limit informacion btTranslationalLimitMotor * getTranslationalLimitMotor() { return &m_linearLimits; } //first 3 are linear, next 3 are angular void setLimit(int axis, btScalar lo, btScalar hi) { if(axis<3) { m_linearLimits.m_lowerLimit[axis] = lo; m_linearLimits.m_upperLimit[axis] = hi; } else { lo = btNormalizeAngle(lo); hi = btNormalizeAngle(hi); m_angularLimits[axis-3].m_loLimit = lo; m_angularLimits[axis-3].m_hiLimit = hi; } } //! Test limit /*! - free means upper < lower, - locked means upper == lower - limited means upper > lower - limitIndex: first 3 are linear, next 3 are angular */ bool isLimited(int limitIndex) { if(limitIndex<3) { return m_linearLimits.isLimited(limitIndex); } return m_angularLimits[limitIndex-3].isLimited(); } virtual void calcAnchorPos(void); // overridable int get_limit_motor_info2( btRotationalLimitMotor * limot, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB, btConstraintInfo2 *info, int row, btVector3& ax1, int rotational, int rotAllowed = false); // access for UseFrameOffset bool getUseFrameOffset() { return m_useOffsetForConstraintFrame; } void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; } ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). ///If no axis is provided, it uses the default axis for this constraint. virtual void setParam(int num, btScalar value, int axis = -1); ///return the local value of parameter virtual btScalar getParam(int num, int axis = -1) const; void setAxis( const btVector3& axis1, const btVector3& axis2); virtual int calculateSerializeBufferSize() const; ///fills the dataBuffer and returns the struct name (and 0 on failure) virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const; }; ///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 struct btGeneric6DofConstraintData { btTypedConstraintData m_typeConstraintData; btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis. btTransformFloatData m_rbBFrame; btVector3FloatData m_linearUpperLimit; btVector3FloatData m_linearLowerLimit; btVector3FloatData m_angularUpperLimit; btVector3FloatData m_angularLowerLimit; int m_useLinearReferenceFrameA; int m_useOffsetForConstraintFrame; }; SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const { return sizeof(btGeneric6DofConstraintData); } ///fills the dataBuffer and returns the struct name (and 0 on failure) SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const { btGeneric6DofConstraintData* dof = (btGeneric6DofConstraintData*)dataBuffer; btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer); m_frameInA.serializeFloat(dof->m_rbAFrame); m_frameInB.serializeFloat(dof->m_rbBFrame); int i; for (i=0;i<3;i++) { dof->m_angularLowerLimit.m_floats[i] = float(m_angularLimits[i].m_loLimit); dof->m_angularUpperLimit.m_floats[i] = float(m_angularLimits[i].m_hiLimit); dof->m_linearLowerLimit.m_floats[i] = float(m_linearLimits.m_lowerLimit[i]); dof->m_linearUpperLimit.m_floats[i] = float(m_linearLimits.m_upperLimit[i]); } dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0; dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0; return "btGeneric6DofConstraintData"; } #endif //BT_GENERIC_6DOF_CONSTRAINT_H