

Particle Universe
Manual

- Plugin -

Author: Henry van Merode
Version 1.6

www.fxpression.com

 2

Introduction... 3
The Particle System plugin ... 4

Class Diagram .. 4
Setup plugin .. 4

PhysX™.. 7
Setup PhysX™.. 7
Using PhysX™.. 7

Create, start, stop and delete a particle system.. 9
Demo application.. 12
Particle system events.. 14
Tools... 15

Atlas Image Tool ... 15
Creation of an atlas image... 15
Interpolation between images.. 16

Runtime analysis... 16
Multi-threading.. 17

 3

Introduction
The Particle Universe plugin is an open source system (MIT license) to create
visually stunning particle systems for Ogre1-powered applications. The package
consist of a runtime plugin for in-game usage and several example scripts and
textures.

This manual is used to setup the plugin and describes the demo and the AtlasImage
tool; this tool is used to create an Atlas image.

1 Ogre is a multiplatform rendering system that is widely used in commercial video games. See
www.ogre3d.org

 4

The Particle System plugin

The Particle Universe plugin is a DLL (in case of Windows™) that can be loaded in
the Ogre render engine. The Visual Studio solution files (.sln) and all C++ code are
included in the package. The directory structure of the plugin reflects the directory
structure of Ogre.

The API reference – in HTML format – is included in one of the plugin subfolders
(\docs)

The media files are included in the subfolder \media

Class Diagram
The figure below presents the main classes of which the Particle Universe plugin
consist.

Setup plugin
Unzip Particle Universe Plugin package. This results in the creation of the following
directory structure:

 VCBuild

 5

 Plugins
 Samples
 Tools

The VCBuild directory contains the source and addional files to make everything
work.

When building the Ogre components, assume that you selected one of the Visual
Studio compilers in the CMake dialog and generated the necessary files to the
VCBuild directory as shown in the CMake dialog below.

Of course this may be a complete different directory, but for convenience it is
assumed that the directory is named VCBuild (and so is the directory in the Particle
Universe Plugin package).

Copy all subdirectories and files of VCBuild to the VCBuild directory (or an alternative)
of Ogre, that was generated with CMake (which contains all the Ogre code). All
Particle Universe files are copied to the Ogre directory strucure.

Next step is compiling the Particle Universe DLL. Open ParticleUniverse_vc9.sln in
VCBuild and compile. The ‘post-event build’ copies some files to Ogre’s sdk directory.
The sdk directory is used by applications that make use of both Ogre and Particle
Universe.
After compilation, the ParticleUniverse_d.dll and ParticleUniverse.dll can be used
similar to Ogre’s own plugins. For usage, add the entry Plugin=ParticleUniverse_d
to the Plugins.cfg file of your application if you work in a Debug mode, or add
Plugin=ParticleUniverse for a Release build.

To use the example scripts, add the following entries to your resources.cfg file
(VCBuild/bin/release/resources.cfg and/or VCBuild/bin/debug/resources.cfg).

FileSystem=../../Plugins/ParticleUniverse/media/cor e
FileSystem=../../Plugins/ParticleUniverse/media/exa mples/materials
FileSystem=../../Plugins/ParticleUniverse/media/exa mples/models
FileSystem=../../Plugins/ParticleUniverse/media/exa mples/ogre
FileSystem=../../Plugins/ParticleUniverse/media/exa mples/scripts
FileSystem=../../Plugins/ParticleUniverse/media/exa mples/textures

 6

�
Using ‘soft particles’ takes some fiddling. Also experiment with depthscale in
your code using the setDepthScale() function:

ParticleUniverse::ParticleSystemManager::getSinglet onPtr()->setDepthScale(10.0);

 7

PhysX™

Setup PhysX™

If the PhysX engine is used in Particle Universe, you have to:
1. Uncomment the line #ifdef PU_PHYSICS in ParticleUniversePrerequisites.h (by

default the PhysX engine is supported in Particle Universe, but other physics
engines can also be added, although this still takes a decent amount of code).

2. Set the environment variable PHYSX_HOME. For PhysX version 2.8.1. this can
be done by the command:
set PHYSX_HOME=C:\Program Files\NVIDIA Corporation\NVIDIA PhysX
SDK\v2.8.1\SDKs\
The PHYSX_HOME environment variable is used in the compiler settings.

3. Add PhysXLoader.lib to the linker settings. Linking to PhysXLoader.lib can be
omitted if the client application itself already links to this lib.

4. The project properties contains references to PhysX™ directories
($(PHYSX_HOME)Physics\include, for example). If you don't want to use Physx™
you can remove them or just keep them in. If you keep the directories, the
compilation returns a Project : warning PRJ0018. This is harmless, so there is no
urgent reason to remove these references.

The compatibility matrix below lists which version of the Particle Universe plugin
works with the version of Ogre and PhysX™.

Particle Universe version Ogre version PhysX™ version
1.6

(open source version)
1.8 2.8.1

1.5.1 1.8 2.8.1
1.5 1.7 2.8.1
1.4 1.7 2.8.1
1.3 1.7 2.8.1
1.2 1.7 2.8.1
1.1 1.6 2.8.1

1.0 / 1.01 1.6 2.8.1
0.81 1.6 –
0.8 1.4.6 –

Using PhysX™

Particle Universe is prepared for easy integration of PhysX™. For usage of the
PhysX™ features, Particle Universe contains a PhysXBridge, a singleton class that
communicates with PhysX™. Particle Universe assumes that initialisation and
simulation of PhysX™ is done in the client application, but for testing purposes, the
initNx() and exitNx() functions are supported by Particle Universe. The PhysXBridge

 8

contains a few important functions that must be called from outside the Particle
Universe plugin.

setScene(NxScene* scene) Setting the scene must be done before PhysX™ can be
used in Particle Universe. This is done by means of calling
ParticleUniverse::PhysXBridge::getSingletonPtr()->setScene(myNxScene);

synchronize(Ogre::Real timeElapsed) After each PhysX™ simulation step, Particle
Universe needs to be synchronized. The timeElapsed argument is the time between
two simulation steps.

onContactNotify(NxContactPair& pair, NxU32 events, NxVec3 contactPoint)
Alhough Particle Universe includes an NxUserContactReport class for testing
purposes, it is assumed that the client application also wants to use a
NxUserContactReport. Therefore the assumption is that the NxUserContactReport of
the client application is leading. To register particle collision in Particle Universe and
to be able to act, a callback function must be made like the example below. The use
of the onContactNotify() is optional. Only in situations where you want to use an
OnCollision...DoSomething construction, you have to do a callback to the
onContactNotify() function of the PhysXBridge. Beware that the onContactNotify()
callback is only used for "Rigid body based" particles:

void MyContactReport::onContactNotify(NxContactPair & pair, NxU32 events)
{
 NxContactStreamIterator i(pair.stream);
 while(i.goNextPair())
 {
 while(i.goNextPatch())
 {
 while(i.goNextPoint())
 {
 PhysXBridge::getSingletonPtr()->onC ontactNotify(pair, events,
 i.getPoint());
 }
 }
 }
}

Each particle system that uses the PhysX capabilities must add a PhysX Extern to its
Technique. With the use of the PhysX Extern, the shape and other PhysX™
properties are assigned to the particles.

 9

Create, start, stop and delete a particle system

Creation of a particle system is done by means of the ParticleSystemManager. If you
want to create a particle system in your code, you must do this:

ParticleUniverse::ParticleSystemManager* pManager =
ParticleUniverse::ParticleSystemManager::getSinglet onPtr();
ParticleUniverse::ParticleSystem* pSys = pManager-> createParticleSystem(“mySys”,
 “nameOfTemplateScript”, mSceneManager);
mNode->attachObject(pSys);

The “nameOfTemplateScript” is the name of a particle script in a *.pu file, identified
as:

system nameOfTemplateScript
{
 ...
}

Depending on the situation, you can just start and stop the particle system, but
between creation and starting a particle system, there is another step – the prepare
step -, which is automatically executed in the start() functions. Some particle systems
however have some time-consuming precalculation steps. It is adviced to perform
these steps at the start of the scene creation to prevent framerate drops. This is done
by means of the prepare() function.

ParticleUniverse::ParticleSystemManager* pManager =
ParticleUniverse::ParticleSystemManager::getSinglet onPtr();
ParticleUniverse::ParticleSystem* pSys = pManager-> createParticleSystem(“mySys”,
 “nameOfTemplateScript”, mSceneManager);
mNode->attachObject(pSys);
pSys->prepare();

Beware, that if a particle system is started, the resources (materials, textures) may
not be loaded up front and are loaded as soon as the particle system is started. This
also can cause framerate hickups. This is not a problem of Particle Universe itself,
but a generic issue of Ogre. Take care of preloading the materials at the creation of a
scene if possible.

When a particle system is created, it can be started. Standard, the start() function is
called, without arguments. The start() function ‘starts’ a particle system, until it is
either actively stopped by one of the stop() functions or – if configured this way –
automatically stopped by the particle system itself (i.e. by means of the
DoStopSystemEventHandler). Also pausing and resuming a particle system is
possible. There are a few variations of the start, stop, pause and resume functions,
with gives more control over the particle systems life-cycle. The table below includes
the variations:

Particle System function Description
start(void) Start a particle system (standard usage).

 10

start(Ogre::Real stopTime) Start a particle system that automatically
stops after ‘stopTime’ seconds.

startAndStopFade(Ogre::Real stopTime) Start a particle system, which stops
emitting particles after ‘stopTime’ seconds;
this applies to all emitters in the particle
system. This function differs from the
previous function in that sense that the
startAndStopFade() function does not stop
immediately, but gradually, after the last
particle has been expired.

stop(void) Stops a running particle system (standard
usage).

stop(Ogre::Real stopTime) Stops a running particle system after
‘stopTime’ seconds.

Remark: Although there is a
start(Ogre::Real stopTime) function that
also stops after ‘stopTime’ seconds from
start, you often have a situation where the
particle system was just started with the
start() function.

stopFade(void) Stops the particle system from emitting
particles.

stopFade(Ogre::Real stopTime) Stops the particle system from emitting
particles after ‘stopTime’ seconds.

pause(void) Pauses a running particle system.
pause(Ogre::Real pauseTime) Pauses a running particle system during a

period of time. After this time, the particle
system automatically resumes.

resume(void) Resumes a paused particle system.

Example of creating and starting a particle system:

ParticleUniverse::ParticleSystemManager* pManager =
ParticleUniverse::ParticleSystemManager::getSinglet onPtr();
ParticleUniverse::ParticleSystem* pSys = pManager-> createParticleSystem(“mySys”,
 “nameOfTemplateScript”, mSceneManager);
mNode->attachObject(pSys);
pSys->start(3.0f);

Particle systems that where created by means of the createParticleSystem() function
of the ParticleSystemManager, must also be deleted by means of the
destroyParticleSystem() function. A good practice is to destroy particle systems
before the complete scene is destroyed. A fast way of deleting all particle systems is
by means of ParticleSystemManager::destroyAllParticleSystems().

�
Particle systems must always be actively deleted, preferable before other
scene objects are destroyed.

 11

Example to delete a particle system:

pSys->stop();
mNode->detachObject(pSys);
pManager->destroyParticleSystem(“mySys”, mSceneMana ger);

 12

Demo application
From version 1.5 a demo application is shipped with the package. This demo
application runs in the Samplebrowser of Ogre 3D. The project is included in the
ParticleUniverse solution and the code can be found in:

 Particle Universe Plugin
 VCBuild
 Samples

 ParticleUniverseDemo

To run this demo, a few things must be done:

1.
Add the resources needed for this demo to VCBuild/bin/release/resources.cfg and to
VCBuild/bin/debug/resources.cfg.

It makes use of the example scripts and textures. Add the following settings (if not
done already):

FileSystem=../../Plugins/ParticleUniverse/media/exa mples/scripts
FileSystem=../../Plugins/ParticleUniverse/media/exa mples/materials
FileSystem=../../Plugins/ParticleUniverse/media/exa mples/models
FileSystem=../../Plugins/ParticleUniverse/media/exa mples/textures

2.
Add the entry

Plugin=ParticleUniverse_d

to VCBuild/bin/debug/plugins.cfg

Add the entry

Plugin=ParticleUniverse

to VCBuild/bin/release/plugins.cfg

3.
Add the entry
SamplePlugin=Sample_ParticleUniverseDemo_d

to VCBuild/bin/debug/samples.cfg

Add the entry
SamplePlugin=Sample_ParticleUniverseDemo

to VCBuild/bin/release/samples.cfg

4.
Compile the Sample_ParticleUniverseDemo (in debug and/or release). Make sure
you compiled the ParticleUniverse plugin first.

 13

5.
Run the SampleBrowser_d.exe (Debug mode) SampleBrowser.exe (Release mode).

 14

Particle system events
An application that uses the Particle Universe plugin may act on a certain event that
occurs with a particle system. Examples are

• playing a sound when a particle system starts.
• deleting a particle system when a particle system stops.

Sometimes the event is initiated by the application itself, for example starting a
particle system. In other cases, the event occurs withing the particle system. It is
possible to create and register one or more ParticleSystemListeners for each particle
system, which listen to the particle system events. Each listener must implement the
virtual function handleParticleSystemEvent(). In the implementation of this function,
the possible events are handled. Below is a code example of a Tank class, which is a
child of ParticleSystemListener, handling certain events:

void Tank::handleParticleSystemEvent(ParticleUniver se::ParticleSystem* particleSystem,
ParticleUniverseEvent& particleUniverseEvent)
{
 switch(particleUniverseEvent.eventType)
 {
 case PU_EVT_SYSTEM_STARTED:
 {
 // Tank fired a grenade
 playSound(“fireGrenade”, particleSystem-> getDerivedPosition());
 }
 break;

 case PU_EVT_EMITTER_STOPPED:
 {
 // When the emission of particles stops, play a reload sound
 playSound(“reloadGrenade”,
 particleUniverseEvent.emitter-> getDerivedPosition());
 }
 break;
 }
}

Possible events are listed in the file ParticleUniverseCommon.h

Note, that the particle system can also contain observers and event handlers. These
type of objects also act on certain events, but these are usually events of individual
particles. These types of components are also used inside a particle system, while
the ParticleSystemListener is for external use.

 15

Tools

Atlas Image Tool

The Atlas Image Tool can be found in the Tools directory and is used to create atlas
images (textures), which are supported by the Particle Universe plugin. For example,
an atlas texture can be used in combination with the Texture Animator. The Texture
Animator (= particle affector) uses an atlas texture and uses rectangles of the texture
(defined by texture coordinates) to create an animation.
The Atlas Image Tool is a commandline tool that reads a configuration file and
creates an atlas image. Syntax:

AtlasImageTool configFileName

Example of its usage:

C:\AtlasImageTool atlas.cfg

Creation of an atlas image

The configuration file contains the settings, needed to create an atlas texture.
Example:

// Set the path of all image files
ImagePath = ../../images

// Define the input files
InputImage = flare.png; smoke.png; smoke.png

// Alpha correction
Alpha = 1.0; 1.0; 0.0

// Define the output (atlas) file
OutputImage = interpolate.png

The configuration file uses 3 images from 3 .png files and creates 1 new .png file.
This new file contains the other 3 images. The Atlas Image Tool tries to distribute
the input images as optimal as possible.

• ImagePath is a keyword and identifies the relative directory where the images are
stored.

• InputImage is a keyword and identifies a list of imagefiles of which the atlas
image is constructed. A restriction is that all imagefiles must have the same
dimensions (width and height), the same format and no mipmaps.

• Alpha is an optional keyword and identifies a list of values. Each value is used to
correct the alpha component of its related imagefile.

 16

• OutputImage is a keyword and identifies the name of the atlas image that is
created.

Interpolation between images

An optional feature is to generate image frames between the specified input images.
For example, if image1.png and image2.png are defined with the InputImage
keyword, and frame 0 and 10 are assigned to it (by means of the Frame keyword),
image frames 1..9 are automatically generated. The images are interpolated between
image1.png and image2.png.

// Define the input files
InputImage = image1.png; image2.png

// Relate every inputfile to a frame (intermediate frames are interpolated)
Frame = 0; 10

• Frame is a keyword and identifies a list of framenumbers that is related to the list

with input images.

Runtime analysis

The file ParticleUniversePrerequisites.h contains the #define PU_LOG_DEBUG
directive, that determines whether runtime debug info is on or off. It can be used to
determine the optimal values of the quota’s, defined in a Technique. If a Particle
System runs and PU_LOG_DEBUG is defined, the maximum number of emitted
visual particles, emitted emitters, emitted techniques and emitted Affectors, is
calculated. When the particle system stops, this data is written to the .log file and can
be used to set the quota’s.

 17

Multi-threading
Multi-threading capabilities of Particle Universe are still limited, but the first steps are
already taken. The ForceField Affector, that ships with version 1.3, allows generation
of a force field in a separate thread. This is activated when the Forcefield type is set
to ‘matrix’.

This option only works if OGRE_THREAD_SUPPORT (in OgreConfig.h) is set to a
value > 0. Particle Universe makes use of the worker queue functionality in Ogre.

