/************************************************************************* * * * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * * All rights reserved. Email: russ@q12.org Web: www.q12.org * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of EITHER: * * (1) The GNU Lesser General Public License as published by the Free * * Software Foundation; either version 2.1 of the License, or (at * * your option) any later version. The text of the GNU Lesser * * General Public License is included with this library in the * * file LICENSE.TXT. * * (2) The BSD-style license that is included with this library in * * the file LICENSE-BSD.TXT. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * * LICENSE.TXT and LICENSE-BSD.TXT for more details. * * * *************************************************************************/ /* collision tests. if this program is run without any arguments it will perform all the tests multiple times, with different random data for each test. if this program is given a test number it will run that test graphically/interactively, in which case the space bar can be used to change the random test conditions. */ #include #include #ifdef _MSC_VER #pragma warning(disable:4244 4305) // for VC++, no precision loss complaints #endif // select correct drawing functions #ifdef dDOUBLE #define dsDrawSphere dsDrawSphereD #define dsDrawBox dsDrawBoxD #define dsDrawLine dsDrawLineD #define dsDrawCapsule dsDrawCapsuleD #endif //**************************************************************************** // test infrastructure, including constants and macros #define TEST_REPS1 1000 // run each test this many times (first batch) #define TEST_REPS2 10000 // run each test this many times (second batch) const dReal tol = 1e-8; // tolerance used for numerical checks #define MAX_TESTS 1000 // maximum number of test slots #define Z_OFFSET 2 // z offset for drawing (to get above ground) // test function. returns 1 if the test passed or 0 if it failed typedef int test_function_t(); struct TestSlot { int number; // number of test char *name; // name of test int failcount; test_function_t *test_fn; int last_failed_line; }; TestSlot testslot[MAX_TESTS]; // globals used by the test functions int graphical_test=0; // show graphical results of this test, 0=none int current_test; // currently execiting test int draw_all_objects_called; #define MAKE_TEST(number,function) \ if (testslot[number].name) dDebug (0,"test number already used"); \ if (number <= 0 || number >= MAX_TESTS) dDebug (0,"bad test number"); \ testslot[number].name = # function; \ testslot[number].test_fn = function; #define FAILED() { if (graphical_test==0) { \ testslot[current_test].last_failed_line=__LINE__; return 0; } } #define PASSED() { return 1; } //**************************************************************************** // globals /* int dBoxBox (const dVector3 p1, const dMatrix3 R1, const dVector3 side1, const dVector3 p2, const dMatrix3 R2, const dVector3 side2, dVector3 normal, dReal *depth, int *code, int maxc, dContactGeom *contact, int skip); */ void dLineClosestApproach (const dVector3 pa, const dVector3 ua, const dVector3 pb, const dVector3 ub, dReal *alpha, dReal *beta); //**************************************************************************** // draw all objects in a space, and draw all the collision contact points void nearCallback (void *data, dGeomID o1, dGeomID o2) { int i,j,n; const int N = 100; dContactGeom contact[N]; if (dGeomGetClass (o2) == dRayClass) { n = dCollide (o2,o1,N,&contact[0],sizeof(dContactGeom)); } else { n = dCollide (o1,o2,N,&contact[0],sizeof(dContactGeom)); } if (n > 0) { dMatrix3 RI; dRSetIdentity (RI); const dReal ss[3] = {0.01,0.01,0.01}; for (i=0; i tol) FAILED(); // ********** test point on surface has depth 0 for (j=0; j<3; j++) q[j] = dRandReal()-0.5; dNormalize3 (q); for (j=0; j<3; j++) q[j] = q[j]*r + p[j]; if (dFabs(dGeomSpherePointDepth (sphere,q[0],q[1],q[2])) > tol) FAILED(); // ********** test point at random depth d = (dRandReal()*2-1) * r; for (j=0; j<3; j++) q[j] = dRandReal()-0.5; dNormalize3 (q); for (j=0; j<3; j++) q[j] = q[j]*(r-d) + p[j]; if (dFabs(dGeomSpherePointDepth (sphere,q[0],q[1],q[2])-d) > tol) FAILED(); PASSED(); } int test_box_point_depth() { int i,j; dVector3 s,p,q,q2; // s = box sides dMatrix3 R; dReal ss,d; // ss = smallest side dSimpleSpace space(0); dGeomID box = dCreateBox (0,1,1,1); dSpaceAdd (space,box); // ********** make a random box for (j=0; j<3; j++) s[j] = dRandReal() + 0.1; dGeomBoxSetLengths (box,s[0],s[1],s[2]); dMakeRandomVector (p,3,1.0); dGeomSetPosition (box,p[0],p[1],p[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (box,R); // ********** test center point has depth of smallest side ss = 1e9; for (j=0; j<3; j++) if (s[j] < ss) ss = s[j]; if (dFabs(dGeomBoxPointDepth (box,p[0],p[1],p[2]) - 0.5*ss) > tol) FAILED(); // ********** test point on surface has depth 0 for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j]; i = dRandInt (3); if (dRandReal() > 0.5) q[i] = 0.5*s[i]; else q[i] = -0.5*s[i]; dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q2[j] += p[j]; if (dFabs(dGeomBoxPointDepth (box,q2[0],q2[1],q2[2])) > tol) FAILED(); // ********** test points outside box have -ve depth for (j=0; j<3; j++) { q[j] = 0.5*s[j] + dRandReal() + 0.01; if (dRandReal() > 0.5) q[j] = -q[j]; } dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q2[j] += p[j]; if (dGeomBoxPointDepth (box,q2[0],q2[1],q2[2]) >= 0) FAILED(); // ********** test points inside box have +ve depth for (j=0; j<3; j++) q[j] = s[j] * 0.99 * (dRandReal()-0.5); dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q2[j] += p[j]; if (dGeomBoxPointDepth (box,q2[0],q2[1],q2[2]) <= 0) FAILED(); // ********** test random depth of point aligned along axis (up to ss deep) i = dRandInt (3); for (j=0; j<3; j++) q[j] = 0; d = (dRandReal()*(ss*0.5+1)-1); q[i] = s[i]*0.5 - d; if (dRandReal() > 0.5) q[i] = -q[i]; dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q2[j] += p[j]; if (dFabs(dGeomBoxPointDepth (box,q2[0],q2[1],q2[2]) - d) >= tol) FAILED(); PASSED(); } int test_ccylinder_point_depth() { int j; dVector3 p,a; dMatrix3 R; dReal r,l,beta,x,y,d; dSimpleSpace space(0); dGeomID ccyl = dCreateCapsule (0,1,1); dSpaceAdd (space,ccyl); // ********** make a random ccyl r = dRandReal()*0.5 + 0.01; l = dRandReal()*1 + 0.01; dGeomCapsuleSetParams (ccyl,r,l); dMakeRandomVector (p,3,1.0); dGeomSetPosition (ccyl,p[0],p[1],p[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (ccyl,R); // ********** test point on axis has depth of 'radius' beta = dRandReal()-0.5; for (j=0; j<3; j++) a[j] = p[j] + l*beta*R[j*4+2]; if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2]) - r) >= tol) FAILED(); // ********** test point on surface (excluding caps) has depth 0 beta = dRandReal()*2*M_PI; x = r*sin(beta); y = r*cos(beta); beta = dRandReal()-0.5; for (j=0; j<3; j++) a[j] = p[j] + x*R[j*4+0] + y*R[j*4+1] + l*beta*R[j*4+2]; if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2])) >= tol) FAILED(); // ********** test point on surface of caps has depth 0 for (j=0; j<3; j++) a[j] = dRandReal()-0.5; dNormalize3 (a); if (dDOT14(a,R+2) > 0) { for (j=0; j<3; j++) a[j] = p[j] + a[j]*r + l*0.5*R[j*4+2]; } else { for (j=0; j<3; j++) a[j] = p[j] + a[j]*r - l*0.5*R[j*4+2]; } if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2])) >= tol) FAILED(); // ********** test point inside ccyl has positive depth for (j=0; j<3; j++) a[j] = dRandReal()-0.5; dNormalize3 (a); beta = dRandReal()-0.5; for (j=0; j<3; j++) a[j] = p[j] + a[j]*r*0.99 + l*beta*R[j*4+2]; if (dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2]) < 0) FAILED(); // ********** test point depth (1) d = (dRandReal()*2-1) * r; beta = dRandReal()*2*M_PI; x = (r-d)*sin(beta); y = (r-d)*cos(beta); beta = dRandReal()-0.5; for (j=0; j<3; j++) a[j] = p[j] + x*R[j*4+0] + y*R[j*4+1] + l*beta*R[j*4+2]; if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2]) - d) >= tol) FAILED(); // ********** test point depth (2) d = (dRandReal()*2-1) * r; for (j=0; j<3; j++) a[j] = dRandReal()-0.5; dNormalize3 (a); if (dDOT14(a,R+2) > 0) { for (j=0; j<3; j++) a[j] = p[j] + a[j]*(r-d) + l*0.5*R[j*4+2]; } else { for (j=0; j<3; j++) a[j] = p[j] + a[j]*(r-d) - l*0.5*R[j*4+2]; } if (dFabs(dGeomCapsulePointDepth (ccyl,a[0],a[1],a[2]) - d) >= tol) FAILED(); PASSED(); } int test_plane_point_depth() { int j; dVector3 n,p,q,a,b; // n = plane normal dReal d; dSimpleSpace space(0); dGeomID plane = dCreatePlane (0,0,0,1,0); dSpaceAdd (space,plane); // ********** make a random plane for (j=0; j<3; j++) n[j] = dRandReal() - 0.5; dNormalize3 (n); d = dRandReal() - 0.5; dGeomPlaneSetParams (plane,n[0],n[1],n[2],d); dPlaneSpace (n,p,q); // ********** test point on plane has depth 0 a[0] = dRandReal() - 0.5; a[1] = dRandReal() - 0.5; a[2] = 0; for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j]; if (dFabs(dGeomPlanePointDepth (plane,b[0],b[1],b[2])) >= tol) FAILED(); // ********** test arbitrary depth point a[0] = dRandReal() - 0.5; a[1] = dRandReal() - 0.5; a[2] = dRandReal() - 0.5; for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j]; if (dFabs(dGeomPlanePointDepth (plane,b[0],b[1],b[2]) + a[2]) >= tol) FAILED(); // ********** test depth-1 point a[0] = dRandReal() - 0.5; a[1] = dRandReal() - 0.5; a[2] = -1; for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j]; if (dFabs(dGeomPlanePointDepth (plane,b[0],b[1],b[2]) - 1) >= tol) FAILED(); PASSED(); } //**************************************************************************** // ray tests int test_ray_and_sphere() { int j; dContactGeom contact; dVector3 p,q,q2,n,v1; dMatrix3 R; dReal r,k; dSimpleSpace space(0); dGeomID ray = dCreateRay (0,0); dGeomID sphere = dCreateSphere (0,1); dSpaceAdd (space,ray); dSpaceAdd (space,sphere); // ********** make a random sphere of radius r at position p r = dRandReal()+0.1; dGeomSphereSetRadius (sphere,r); dMakeRandomVector (p,3,1.0); dGeomSetPosition (sphere,p[0],p[1],p[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (sphere,R); // ********** test zero length ray just inside sphere dGeomRaySetLength (ray,0); dMakeRandomVector (q,3,1.0); dNormalize3 (q); for (j=0; j<3; j++) q[j] = 0.99*r * q[j] + p[j]; dGeomSetPosition (ray,q[0],q[1],q[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (ray,R); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test zero length ray just outside that sphere dGeomRaySetLength (ray,0); dMakeRandomVector (q,3,1.0); dNormalize3 (q); for (j=0; j<3; j++) q[j] = 1.01*r * q[j] + p[j]; dGeomSetPosition (ray,q[0],q[1],q[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (ray,R); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test finite length ray totally contained inside the sphere dMakeRandomVector (q,3,1.0); dNormalize3 (q); k = dRandReal(); for (j=0; j<3; j++) q[j] = k*r*0.99 * q[j] + p[j]; dMakeRandomVector (q2,3,1.0); dNormalize3 (q2); k = dRandReal(); for (j=0; j<3; j++) q2[j] = k*r*0.99 * q2[j] + p[j]; for (j=0; j<3; j++) n[j] = q2[j] - q[j]; dNormalize3 (n); dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]); dGeomRaySetLength (ray,dDISTANCE (q,q2)); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test finite length ray totally outside the sphere dMakeRandomVector (q,3,1.0); dNormalize3 (q); do { dMakeRandomVector (n,3,1.0); dNormalize3 (n); } while (dDOT(n,q) < 0); // make sure normal goes away from sphere for (j=0; j<3; j++) q[j] = 1.01*r * q[j] + p[j]; dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]); dGeomRaySetLength (ray,100); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test ray from outside to just above surface dMakeRandomVector (q,3,1.0); dNormalize3 (q); for (j=0; j<3; j++) n[j] = -q[j]; for (j=0; j<3; j++) q2[j] = 2*r * q[j] + p[j]; dGeomRaySet (ray,q2[0],q2[1],q2[2],n[0],n[1],n[2]); dGeomRaySetLength (ray,0.99*r); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test ray from outside to just below surface dGeomRaySetLength (ray,1.01*r); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 1) FAILED(); for (j=0; j<3; j++) q2[j] = r * q[j] + p[j]; if (dDISTANCE (contact.pos,q2) > tol) FAILED(); // ********** test contact point distance for random rays dMakeRandomVector (q,3,1.0); dNormalize3 (q); k = dRandReal()+0.5; for (j=0; j<3; j++) q[j] = k*r * q[j] + p[j]; dMakeRandomVector (n,3,1.0); dNormalize3 (n); dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]); dGeomRaySetLength (ray,100); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom))) { k = dDISTANCE (contact.pos,dGeomGetPosition(sphere)); if (dFabs(k - r) > tol) FAILED(); // also check normal signs if (dDOT (n,contact.normal) > 0) FAILED(); // also check depth of contact point if (dFabs (dGeomSpherePointDepth (sphere,contact.pos[0],contact.pos[1],contact.pos[2])) > tol) FAILED(); draw_all_objects (space); } // ********** test tangential grazing - miss dMakeRandomVector (q,3,1.0); dNormalize3 (q); dPlaneSpace (q,n,v1); for (j=0; j<3; j++) q[j] = 1.01*r * q[j] + p[j]; for (j=0; j<3; j++) q[j] -= n[j]; dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]); dGeomRaySetLength (ray,2); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test tangential grazing - hit dMakeRandomVector (q,3,1.0); dNormalize3 (q); dPlaneSpace (q,n,v1); for (j=0; j<3; j++) q[j] = 0.99*r * q[j] + p[j]; for (j=0; j<3; j++) q[j] -= n[j]; dGeomRaySet (ray,q[0],q[1],q[2],n[0],n[1],n[2]); dGeomRaySetLength (ray,2); if (dCollide (ray,sphere,1,&contact,sizeof(dContactGeom)) != 1) FAILED(); PASSED(); } int test_ray_and_box() { int i,j; dContactGeom contact; dVector3 s,p,q,n,q2,q3,q4; // s = box sides dMatrix3 R; dReal k; dSimpleSpace space(0); dGeomID ray = dCreateRay (0,0); dGeomID box = dCreateBox (0,1,1,1); dSpaceAdd (space,ray); dSpaceAdd (space,box); // ********** make a random box for (j=0; j<3; j++) s[j] = dRandReal() + 0.1; dGeomBoxSetLengths (box,s[0],s[1],s[2]); dMakeRandomVector (p,3,1.0); dGeomSetPosition (box,p[0],p[1],p[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (box,R); // ********** test zero length ray just inside box dGeomRaySetLength (ray,0); for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j]; i = dRandInt (3); if (dRandReal() > 0.5) q[i] = 0.99*0.5*s[i]; else q[i] = -0.99*0.5*s[i]; dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q2[j] += p[j]; dGeomSetPosition (ray,q2[0],q2[1],q2[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (ray,R); if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test zero length ray just outside box dGeomRaySetLength (ray,0); for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j]; i = dRandInt (3); if (dRandReal() > 0.5) q[i] = 1.01*0.5*s[i]; else q[i] = -1.01*0.5*s[i]; dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q2[j] += p[j]; dGeomSetPosition (ray,q2[0],q2[1],q2[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (ray,R); if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test finite length ray totally contained inside the box for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*0.99*s[j]; dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q2[j] += p[j]; for (j=0; j<3; j++) q3[j] = (dRandReal()-0.5)*0.99*s[j]; dMultiply0 (q4,dGeomGetRotation(box),q3,3,3,1); for (j=0; j<3; j++) q4[j] += p[j]; for (j=0; j<3; j++) n[j] = q4[j] - q2[j]; dNormalize3 (n); dGeomRaySet (ray,q2[0],q2[1],q2[2],n[0],n[1],n[2]); dGeomRaySetLength (ray,dDISTANCE(q2,q4)); if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test finite length ray totally outside the box for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j]; i = dRandInt (3); if (dRandReal() > 0.5) q[i] = 1.01*0.5*s[i]; else q[i] = -1.01*0.5*s[i]; dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q3[j] = q2[j] + p[j]; dNormalize3 (q2); dGeomRaySet (ray,q3[0],q3[1],q3[2],q2[0],q2[1],q2[2]); dGeomRaySetLength (ray,10); if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test ray from outside to just above surface for (j=0; j<3; j++) q[j] = (dRandReal()-0.5)*s[j]; i = dRandInt (3); if (dRandReal() > 0.5) q[i] = 1.01*0.5*s[i]; else q[i] = -1.01*0.5*s[i]; dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q3[j] = 2*q2[j] + p[j]; k = dSqrt(q2[0]*q2[0] + q2[1]*q2[1] + q2[2]*q2[2]); for (j=0; j<3; j++) q2[j] = -q2[j]; dGeomRaySet (ray,q3[0],q3[1],q3[2],q2[0],q2[1],q2[2]); dGeomRaySetLength (ray,k*0.99); if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test ray from outside to just below surface dGeomRaySetLength (ray,k*1.01); if (dCollide (ray,box,1,&contact,sizeof(dContactGeom)) != 1) FAILED(); // ********** test contact point position for random rays for (j=0; j<3; j++) q[j] = dRandReal()*s[j]; dMultiply0 (q2,dGeomGetRotation(box),q,3,3,1); for (j=0; j<3; j++) q2[j] += p[j]; for (j=0; j<3; j++) q3[j] = dRandReal()-0.5; dNormalize3 (q3); dGeomRaySet (ray,q2[0],q2[1],q2[2],q3[0],q3[1],q3[2]); dGeomRaySetLength (ray,10); if (dCollide (ray,box,1,&contact,sizeof(dContactGeom))) { // check depth of contact point if (dFabs (dGeomBoxPointDepth (box,contact.pos[0],contact.pos[1],contact.pos[2])) > tol) FAILED(); // check position of contact point for (j=0; j<3; j++) contact.pos[j] -= p[j]; dMultiply1 (q,dGeomGetRotation(box),contact.pos,3,3,1); if ( dFabs(dFabs (q[0]) - 0.5*s[0]) > tol && dFabs(dFabs (q[1]) - 0.5*s[1]) > tol && dFabs(dFabs (q[2]) - 0.5*s[2]) > tol) { FAILED(); } // also check normal signs if (dDOT (q3,contact.normal) > 0) FAILED(); draw_all_objects (space); } PASSED(); } int test_ray_and_ccylinder() { int j; dContactGeom contact; dVector3 p,a,b,n; dMatrix3 R; dReal r,l,k,x,y; dSimpleSpace space(0); dGeomID ray = dCreateRay (0,0); dGeomID ccyl = dCreateCapsule (0,1,1); dSpaceAdd (space,ray); dSpaceAdd (space,ccyl); // ********** make a random capped cylinder r = dRandReal()*0.5 + 0.01; l = dRandReal()*1 + 0.01; dGeomCapsuleSetParams (ccyl,r,l); dMakeRandomVector (p,3,1.0); dGeomSetPosition (ccyl,p[0],p[1],p[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (ccyl,R); // ********** test ray completely within ccyl for (j=0; j<3; j++) a[j] = dRandReal()-0.5; dNormalize3 (a); k = (dRandReal()-0.5)*l; for (j=0; j<3; j++) a[j] = p[j] + r*0.99*a[j] + k*0.99*R[j*4+2]; for (j=0; j<3; j++) b[j] = dRandReal()-0.5; dNormalize3 (b); k = (dRandReal()-0.5)*l; for (j=0; j<3; j++) b[j] = p[j] + r*0.99*b[j] + k*0.99*R[j*4+2]; dGeomRaySetLength (ray,dDISTANCE(a,b)); for (j=0; j<3; j++) b[j] -= a[j]; dNormalize3 (b); dGeomRaySet (ray,a[0],a[1],a[2],b[0],b[1],b[2]); if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test ray outside ccyl that just misses (between caps) k = dRandReal()*2*M_PI; x = sin(k); y = cos(k); for (j=0; j<3; j++) a[j] = x*R[j*4+0] + y*R[j*4+1]; k = (dRandReal()-0.5)*l; for (j=0; j<3; j++) b[j] = -a[j]*r*2 + k*R[j*4+2] + p[j]; dGeomRaySet (ray,b[0],b[1],b[2],a[0],a[1],a[2]); dGeomRaySetLength (ray,r*0.99); if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test ray outside ccyl that just hits (between caps) dGeomRaySetLength (ray,r*1.01); if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 1) FAILED(); // check depth of contact point if (dFabs (dGeomCapsulePointDepth (ccyl,contact.pos[0],contact.pos[1],contact.pos[2])) > tol) FAILED(); // ********** test ray outside ccyl that just misses (caps) for (j=0; j<3; j++) a[j] = dRandReal()-0.5; dNormalize3 (a); if (dDOT14(a,R+2) < 0) { for (j=0; j<3; j++) b[j] = p[j] - a[j]*2*r + l*0.5*R[j*4+2]; } else { for (j=0; j<3; j++) b[j] = p[j] - a[j]*2*r - l*0.5*R[j*4+2]; } dGeomRaySet (ray,b[0],b[1],b[2],a[0],a[1],a[2]); dGeomRaySetLength (ray,r*0.99); if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test ray outside ccyl that just hits (caps) dGeomRaySetLength (ray,r*1.01); if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom)) != 1) FAILED(); // check depth of contact point if (dFabs (dGeomCapsulePointDepth (ccyl,contact.pos[0],contact.pos[1],contact.pos[2])) > tol) FAILED(); // ********** test random rays for (j=0; j<3; j++) a[j] = dRandReal()-0.5; for (j=0; j<3; j++) n[j] = dRandReal()-0.5; dNormalize3 (n); dGeomRaySet (ray,a[0],a[1],a[2],n[0],n[1],n[2]); dGeomRaySetLength (ray,10); if (dCollide (ray,ccyl,1,&contact,sizeof(dContactGeom))) { // check depth of contact point if (dFabs (dGeomCapsulePointDepth (ccyl,contact.pos[0],contact.pos[1],contact.pos[2])) > tol) FAILED(); // check normal signs if (dDOT (n,contact.normal) > 0) FAILED(); draw_all_objects (space); } PASSED(); } int test_ray_and_plane() { int j; dContactGeom contact; dVector3 n,p,q,a,b,g,h; // n,d = plane parameters dMatrix3 R; dReal d; dSimpleSpace space(0); dGeomID ray = dCreateRay (0,0); dGeomID plane = dCreatePlane (0,0,0,1,0); dSpaceAdd (space,ray); dSpaceAdd (space,plane); // ********** make a random plane for (j=0; j<3; j++) n[j] = dRandReal() - 0.5; dNormalize3 (n); d = dRandReal() - 0.5; dGeomPlaneSetParams (plane,n[0],n[1],n[2],d); dPlaneSpace (n,p,q); // ********** test finite length ray below plane dGeomRaySetLength (ray,0.09); a[0] = dRandReal()-0.5; a[1] = dRandReal()-0.5; a[2] = -dRandReal()*0.5 - 0.1; for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j]; dGeomSetPosition (ray,b[0],b[1],b[2]); dRFromAxisAndAngle (R,dRandReal()*2-1,dRandReal()*2-1, dRandReal()*2-1,dRandReal()*10-5); dGeomSetRotation (ray,R); if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test finite length ray above plane a[0] = dRandReal()-0.5; a[1] = dRandReal()-0.5; a[2] = dRandReal()*0.5 + 0.01; for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j]; g[0] = dRandReal()-0.5; g[1] = dRandReal()-0.5; g[2] = dRandReal() + 0.01; for (j=0; j<3; j++) h[j] = g[0]*p[j] + g[1]*q[j] + g[2]*n[j]; dNormalize3 (h); dGeomRaySet (ray,b[0],b[1],b[2],h[0],h[1],h[2]); dGeomRaySetLength (ray,10); if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test finite length ray that intersects plane a[0] = dRandReal()-0.5; a[1] = dRandReal()-0.5; a[2] = dRandReal()-0.5; for (j=0; j<3; j++) b[j] = a[0]*p[j] + a[1]*q[j] + (a[2]+d)*n[j]; g[0] = dRandReal()-0.5; g[1] = dRandReal()-0.5; g[2] = dRandReal()-0.5; for (j=0; j<3; j++) h[j] = g[0]*p[j] + g[1]*q[j] + g[2]*n[j]; dNormalize3 (h); dGeomRaySet (ray,b[0],b[1],b[2],h[0],h[1],h[2]); dGeomRaySetLength (ray,10); if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom))) { // test that contact is on plane surface if (dFabs (dDOT(contact.pos,n) - d) > tol) FAILED(); // also check normal signs if (dDOT (h,contact.normal) > 0) FAILED(); // also check contact point depth if (dFabs (dGeomPlanePointDepth (plane,contact.pos[0],contact.pos[1],contact.pos[2])) > tol) FAILED(); draw_all_objects (space); } // ********** test ray that just misses for (j=0; j<3; j++) b[j] = (1+d)*n[j]; for (j=0; j<3; j++) h[j] = -n[j]; dGeomRaySet (ray,b[0],b[1],b[2],h[0],h[1],h[2]); dGeomRaySetLength (ray,0.99); if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 0) FAILED(); // ********** test ray that just hits dGeomRaySetLength (ray,1.01); if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 1) FAILED(); // ********** test polarity with typical ground plane dGeomPlaneSetParams (plane,0,0,1,0); for (j=0; j<3; j++) a[j] = 0.1; for (j=0; j<3; j++) b[j] = 0; a[2] = 1; b[2] = -1; dGeomRaySet (ray,a[0],a[1],a[2],b[0],b[1],b[2]); dGeomRaySetLength (ray,2); if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 1) FAILED(); if (dFabs (contact.depth - 1) > tol) FAILED(); a[2] = -1; b[2] = 1; dGeomRaySet (ray,a[0],a[1],a[2],b[0],b[1],b[2]); if (dCollide (ray,plane,1,&contact,sizeof(dContactGeom)) != 1) FAILED(); if (dFabs (contact.depth - 1) > tol) FAILED(); PASSED(); } //**************************************************************************** // a really inefficient, but hopefully correct implementation of // dBoxTouchesBox(), that does 144 edge-face tests. // return 1 if edge v1 -> v2 hits the rectangle described by p1,p2,p3 static int edgeIntersectsRect (dVector3 v1, dVector3 v2, dVector3 p1, dVector3 p2, dVector3 p3) { int k; dVector3 u1,u2,n,tmp; for (k=0; k<3; k++) u1[k] = p3[k]-p1[k]; for (k=0; k<3; k++) u2[k] = p2[k]-p1[k]; dReal d1 = dSqrt(dDOT(u1,u1)); dReal d2 = dSqrt(dDOT(u2,u2)); dNormalize3 (u1); dNormalize3 (u2); if (dFabs(dDOT(u1,u2)) > 1e-6) dDebug (0,"bad u1/u2"); dCROSS (n,=,u1,u2); for (k=0; k<3; k++) tmp[k] = v2[k]-v1[k]; dReal d = -dDOT(n,p1); if (dFabs(dDOT(n,p1)+d) > 1e-8) dDebug (0,"bad n wrt p1"); if (dFabs(dDOT(n,p2)+d) > 1e-8) dDebug (0,"bad n wrt p2"); if (dFabs(dDOT(n,p3)+d) > 1e-8) dDebug (0,"bad n wrt p3"); dReal alpha = -(d+dDOT(n,v1))/dDOT(n,tmp); for (k=0; k<3; k++) tmp[k] = v1[k]+alpha*(v2[k]-v1[k]); if (dFabs(dDOT(n,tmp)+d) > 1e-6) dDebug (0,"bad tmp"); if (alpha < 0) return 0; if (alpha > 1) return 0; for (k=0; k<3; k++) tmp[k] -= p1[k]; dReal a1 = dDOT(u1,tmp); dReal a2 = dDOT(u2,tmp); if (a1<0 || a2<0 || a1>d1 || a2>d2) return 0; return 1; } // return 1 if box 1 is completely inside box 2 static int box1inside2 (const dVector3 p1, const dMatrix3 R1, const dVector3 side1, const dVector3 p2, const dMatrix3 R2, const dVector3 side2) { for (int i=-1; i<=1; i+=2) { for (int j=-1; j<=1; j+=2) { for (int k=-1; k<=1; k+=2) { dVector3 v,vv; v[0] = i*0.5*side1[0]; v[1] = j*0.5*side1[1]; v[2] = k*0.5*side1[2]; dMULTIPLY0_331 (vv,R1,v); vv[0] += p1[0] - p2[0]; vv[1] += p1[1] - p2[1]; vv[2] += p1[2] - p2[2]; for (int axis=0; axis < 3; axis++) { dReal z = dDOT14(vv,R2+axis); if (z < (-side2[axis]*0.5) || z > (side2[axis]*0.5)) return 0; } } } } return 1; } // test if any edge from box 1 hits a face from box 2 static int testBoxesTouch2 (const dVector3 p1, const dMatrix3 R1, const dVector3 side1, const dVector3 p2, const dMatrix3 R2, const dVector3 side2) { int j,k,j1,j2; // for 6 faces from box 2 for (int fd=0; fd<3; fd++) { // direction for face for (int fo=0; fo<2; fo++) { // offset of face // get four points on the face. first get 2 indexes that are not fd int k1=0,k2=0; if (fd==0) { k1 = 1; k2 = 2; } if (fd==1) { k1 = 0; k2 = 2; } if (fd==2) { k1 = 0; k2 = 1; } dVector3 fp[4],tmp; k=0; for (j1=-1; j1<=1; j1+=2) { for (j2=-1; j2<=1; j2+=2) { fp[k][k1] = j1; fp[k][k2] = j2; fp[k][fd] = fo*2-1; k++; } } for (j=0; j<4; j++) { for (k=0; k<3; k++) fp[j][k] *= 0.5*side2[k]; dMULTIPLY0_331 (tmp,R2,fp[j]); for (k=0; k<3; k++) fp[j][k] = tmp[k] + p2[k]; } // for 8 vertices dReal v1[3]; for (v1[0]=-1; v1[0] <= 1; v1[0] += 2) { for (v1[1]=-1; v1[1] <= 1; v1[1] += 2) { for (v1[2]=-1; v1[2] <= 1; v1[2] += 2) { // for all possible +ve leading edges from those vertices for (int ei=0; ei < 3; ei ++) { if (v1[ei] < 0) { // get vertex1 -> vertex2 = an edge from box 1 dVector3 vv1,vv2; for (k=0; k<3; k++) vv1[k] = v1[k] * 0.5*side1[k]; for (k=0; k<3; k++) vv2[k] = (v1[k] + (k==ei)*2)*0.5*side1[k]; dVector3 vertex1,vertex2; dMULTIPLY0_331 (vertex1,R1,vv1); dMULTIPLY0_331 (vertex2,R1,vv2); for (k=0; k<3; k++) vertex1[k] += p1[k]; for (k=0; k<3; k++) vertex2[k] += p1[k]; // see if vertex1 -> vertex2 interesects face if (edgeIntersectsRect (vertex1,vertex2,fp[0],fp[1],fp[2])) return 1; } } } } } } } if (box1inside2 (p1,R1,side1,p2,R2,side2)) return 1; if (box1inside2 (p2,R2,side2,p1,R1,side1)) return 1; return 0; } //**************************************************************************** // dBoxTouchesBox() test int test_dBoxTouchesBox() { int k,bt1,bt2; dVector3 p1,p2,side1,side2; dMatrix3 R1,R2; dSimpleSpace space(0); dGeomID box1 = dCreateBox (0,1,1,1); dSpaceAdd (space,box1); dGeomID box2 = dCreateBox (0,1,1,1); dSpaceAdd (space,box2); dMakeRandomVector (p1,3,0.5); dMakeRandomVector (p2,3,0.5); for (k=0; k<3; k++) side1[k] = dRandReal() + 0.01; for (k=0; k<3; k++) side2[k] = dRandReal() + 0.01; dRFromAxisAndAngle (R1,dRandReal()*2.0-1.0,dRandReal()*2.0-1.0, dRandReal()*2.0-1.0,dRandReal()*10.0-5.0); dRFromAxisAndAngle (R2,dRandReal()*2.0-1.0,dRandReal()*2.0-1.0, dRandReal()*2.0-1.0,dRandReal()*10.0-5.0); dGeomBoxSetLengths (box1,side1[0],side1[1],side1[2]); dGeomBoxSetLengths (box2,side2[0],side2[1],side2[2]); dGeomSetPosition (box1,p1[0],p1[1],p1[2]); dGeomSetRotation (box1,R1); dGeomSetPosition (box2,p2[0],p2[1],p2[2]); dGeomSetRotation (box2,R2); draw_all_objects (space); int t1 = testBoxesTouch2 (p1,R1,side1,p2,R2,side2); int t2 = testBoxesTouch2 (p2,R2,side2,p1,R1,side1); bt1 = t1 || t2; bt2 = dBoxTouchesBox (p1,R1,side1,p2,R2,side2); if (bt1 != bt2) FAILED(); /* // some more debugging info if necessary if (bt1 && bt2) printf ("agree - boxes touch\n"); if (!bt1 && !bt2) printf ("agree - boxes don't touch\n"); if (bt1 && !bt2) printf ("disagree - boxes touch but dBoxTouchesBox " "says no\n"); if (!bt1 && bt2) printf ("disagree - boxes don't touch but dBoxTouchesBox " "says yes\n"); */ PASSED(); } //**************************************************************************** // test box-box collision int test_dBoxBox() { int k,bt; dVector3 p1,p2,side1,side2,normal,normal2; dMatrix3 R1,R2; dReal depth,depth2; int code; dContactGeom contact[48]; dSimpleSpace space(0); dGeomID box1 = dCreateBox (0,1,1,1); dSpaceAdd (space,box1); dGeomID box2 = dCreateBox (0,1,1,1); dSpaceAdd (space,box2); dMakeRandomVector (p1,3,0.5); dMakeRandomVector (p2,3,0.5); for (k=0; k<3; k++) side1[k] = dRandReal() + 0.01; for (k=0; k<3; k++) side2[k] = dRandReal() + 0.01; dRFromAxisAndAngle (R1,dRandReal()*2.0-1.0,dRandReal()*2.0-1.0, dRandReal()*2.0-1.0,dRandReal()*10.0-5.0); dRFromAxisAndAngle (R2,dRandReal()*2.0-1.0,dRandReal()*2.0-1.0, dRandReal()*2.0-1.0,dRandReal()*10.0-5.0); // dRSetIdentity (R1); // we can also try this // dRSetIdentity (R2); dGeomBoxSetLengths (box1,side1[0],side1[1],side1[2]); dGeomBoxSetLengths (box2,side2[0],side2[1],side2[2]); dGeomSetPosition (box1,p1[0],p1[1],p1[2]); dGeomSetRotation (box1,R1); dGeomSetPosition (box2,p2[0],p2[1],p2[2]); dGeomSetRotation (box2,R2); code = 0; depth = 0; bt = dBoxBox (p1,R1,side1,p2,R2,side2,normal,&depth,&code,8,contact, sizeof(dContactGeom)); if (bt==1) { p2[0] += normal[0] * 0.96 * depth; p2[1] += normal[1] * 0.96 * depth; p2[2] += normal[2] * 0.96 * depth; bt = dBoxBox (p1,R1,side1,p2,R2,side2,normal2,&depth2,&code,8,contact, sizeof(dContactGeom)); /* dGeomSetPosition (box2,p2[0],p2[1],p2[2]); draw_all_objects (space); */ if (bt != 1) { FAILED(); dGeomSetPosition (box2,p2[0],p2[1],p2[2]); draw_all_objects (space); } p2[0] += normal[0] * 0.08 * depth; p2[1] += normal[1] * 0.08 * depth; p2[2] += normal[2] * 0.08 * depth; bt = dBoxBox (p1,R1,side1,p2,R2,side2,normal2,&depth2,&code,8,contact, sizeof(dContactGeom)); if (bt != 0) FAILED(); // dGeomSetPosition (box2,p2[0],p2[1],p2[2]); // draw_all_objects (space); } // printf ("code=%2d depth=%.4f ",code,depth); PASSED(); } //**************************************************************************** // graphics int space_pressed = 0; // start simulation - set viewpoint static void start() { static float xyz[3] = {2.4807,-1.8023,2.7600}; static float hpr[3] = {141.5000,-18.5000,0.0000}; dsSetViewpoint (xyz,hpr); } // called when a key pressed static void command (int cmd) { if (cmd == ' ') space_pressed = 1; } // simulation loop static void simLoop (int pause) { do { draw_all_objects_called = 0; unsigned long seed = dRandGetSeed(); testslot[graphical_test].test_fn(); if (draw_all_objects_called) { if (space_pressed) space_pressed = 0; else dRandSetSeed (seed); } } while (!draw_all_objects_called); } //**************************************************************************** // do all the tests void do_tests (int argc, char **argv) { int i,j; // process command line arguments if (argc >= 2) { graphical_test = atoi (argv[1]); } if (graphical_test) { // do one test gaphically and interactively if (graphical_test < 1 || graphical_test >= MAX_TESTS || !testslot[graphical_test].name) { dError (0,"invalid test number"); } printf ("performing test: %s\n",testslot[graphical_test].name); // setup pointers to drawstuff callback functions dsFunctions fn; fn.version = DS_VERSION; fn.start = &start; fn.step = &simLoop; fn.command = &command; fn.stop = 0; fn.path_to_textures = "../../drawstuff/textures"; dsSetSphereQuality (3); dsSetCapsuleQuality (8); dsSimulationLoop (argc,argv,1280,900,&fn); } else { // do all tests noninteractively for (i=0; ifailcount = 0; int total_reps=0; for (int batch=0; batch<2; batch++) { int reps = (batch==0) ? TEST_REPS1 : TEST_REPS2; total_reps += reps; printf ("testing batch %d (%d reps)...\n",batch+1,reps); // run tests for (j=0; jnumber; if (ts[i]->test_fn() != 1) ts[i]->failcount++; } } // check for failures int total_fail_count=0; for (i=0; ifailcount; if (total_fail_count) break; } // print results for (i=0; inumber,ts[i]->name); if (ts[i]->failcount) { printf ("FAILED (%.2f%%) at line %d\n", double(ts[i]->failcount)/double(total_reps)*100.0, ts[i]->last_failed_line); } else { printf ("ok\n"); } } } } //**************************************************************************** int main (int argc, char **argv) { // setup all tests memset (testslot,0,sizeof(testslot)); dInitODE(); MAKE_TEST(1,test_sphere_point_depth); MAKE_TEST(2,test_box_point_depth); MAKE_TEST(3,test_ccylinder_point_depth); MAKE_TEST(4,test_plane_point_depth); MAKE_TEST(10,test_ray_and_sphere); MAKE_TEST(11,test_ray_and_box); MAKE_TEST(12,test_ray_and_ccylinder); MAKE_TEST(13,test_ray_and_plane); MAKE_TEST(100,test_dBoxTouchesBox); MAKE_TEST(101,test_dBoxBox); do_tests (argc,argv); dCloseODE(); return 0; }